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Occurrence dynamics of mammals in 
protected tropical forests respond to human 
presence and activities
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Marcela Guimarães Moreira Lima    12, Emanuel H. Martin    13, 
Badru Mugerwa    14,15, Francesco Rovero16,17, Fernanda Santos    18, 
Eustrate Uzabaho    19 & Richard Bischof    1

Protected areas (PAs) play a vital role in wildlife conservation. Nonetheless 
there is concern and uncertainty regarding how and at what spatial scales 
anthropogenic stressors influence the occurrence dynamics of wildlife 
populations inside PAs. Here we assessed how anthropogenic stressors 
influence occurrence dynamics of 159 mammal species in 16 tropical PAs 
from three biogeographic regions. We quantified these relationships for 
species groups (habitat specialists and generalists) and individual species. We 
used long-term camera-trap data (1,002 sites) and fitted Bayesian dynamic 
multispecies occupancy models to estimate local colonization (the probability 
that a previously empty site is colonized) and local survival (the probability 
that an occupied site remains occupied). Multiple covariates at both the local 
scale and landscape scale influenced mammal occurrence dynamics, although 
responses differed among species groups. Colonization by specialists 
increased with local-scale forest cover when landscape-scale fragmentation 
was low. Survival probability of generalists was higher near the edge than in 
the core of the PA when landscape-scale human population density was low 
but the opposite occurred when population density was high. We conclude 
that mammal occurrence dynamics are impacted by anthropogenic stressors 
acting at multiple scales including outside the PA itself.

Land-use change is the primary driver of biodiversity loss, mainly 
through the loss, degradation and fragmentation of habitat1,2. This is 
particularly the case with the conversion of species-rich tropical forests 
to anthropogenic land uses3,4. With growing threats such as land-use 
change, hunting and fires, protected areas (PAs) provide vital refuges 
for many species as they can prevent biodiversity declines especially 
in medium- and large-sized mammals5,6. For this reason, the need to 
increase and expand the coverage of PAs has been recognized globally 

as a conservation priority (UN Biodiversity Conference, COP 15).  
Concurrently, there is an urgent need to assess the degree to which 
PAs can conserve wildlife, how different anthropogenic stressors may 
affect the potential of PAs in protecting wildlife populations and how 
this depends on the species and the location.

At least three factors hamper our ability to make robust conclu-
sions about the effectiveness of PAs in the tropics. First, availability of 
biodiversity data across the tropics are scarce7,8. Second, available data 
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The scale at which environmental change impacts mammal popu-
lations has implications for PA management. For instance, if forest 
fragmentation or human population density at the landscape scale 
reduces local colonization, large-scale land-use planning and protec-
tion should be prioritized (inside and outside PAs). Examples are by 
establishing buffer zones around PAs where only compatible land uses 
are permitted (such as low-intensity native polyculture instead of exotic 
monoculture tree plantations) or by increasing connectivity to other 
reserves17. Similarly, hunting restrictions or regulations within PAs 
(local scale) may be insufficient to halt the negative landscape-scale 
effects of hunting and other human impacts18. Alternatively, if habitat 
within the PAs is the main influence on colonization, emphasis should 
be placed on maintaining this protected habitat.

Anthropogenic threats do not act randomly, with some species 
more affected than others. Additionally, the effects of anthropo-
genic activities on species can differ in the direction of their effect as 
seen in both negative and positive responses to habitat fragmenta-
tion19,20. For example, species that occupy only a few habitat types 
(hereafter specialists) are at greater risk of extinction than those 
that occupy many (hereafter generalists) and are also known to be 
more sensitive to human-induced environmental changes such as 
habitat loss21–24. Furthermore, assessing species-specific responses 

often register the presence or absence of a species at a single point in 
time rather than trends over time9, which precludes monitoring and 
assessment of changes10,11. Finally, species responses to anthropogenic 
pressures at a given location depend on the spatial extent (hereafter 
scale) at which they are measured, yet biodiversity patterns often 
reflect multiple processes that operate at different scales12–14. Pumas, 
for example, select certain habitat such as woodlands or grasslands 
at a local scale (250–530 m) but avoid agricultural and urban areas 
at larger scales (7.6–9.9 km)15. This is important because species may 
be affected by not only human presence and activities inside the PA 
(at the local scale) but also at larger scales that encompass areas out-
side the PA. Others16 investigated how forest cover at the local scale 
(30–120 m) related to the occurrence dynamics of tropical mammals 
and did not detect a significant relationship. However, such results may 
be confounded by larger landscape-scale conditions. For instance, a 
pantropical meta-analysis suggests that habitat destruction around 
PAs is associated with biodiversity declines inside PAs17. Empirical 
evidence of how anthropogenic stressors at multiple scales impact 
the dynamics of biodiversity within tropical PAs is sparse. In particular, 
the extent to which processes at the local and landscape scale interact 
and how such interactions affect tropical-forest mammal communities 
remains largely unknown.
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Fig. 1 | Distribution of study locations. a, Location of PAs (n = 16) in tropical 
and subtropical rain forests. b,c, Camera-trap sites and forest cover for two PAs 
(Central Suriname Nature Reserve (CSN) and Udzungwa Mountains National Park 
(UDZ)) at the local scale (600 m circular buffer around camera-trap sites) (b) and 
landscape scale (10 km buffer around camera-trap arrays) (c). CSN provides an 
example of a protected area with a high percentage of forest cover (b and c) and 
low forest fragmentation at the landscape scale (c). On the contrary, camera-
trap sites from UDZ show a larger variation in forest cover at the local scale (b) 

and high fragmentation at the landscape scale (c). BBS, Bukit Barisan; BCI, Barro 
Colorado Nature Monument–Soberania National Park; BIF, Bwindi Impenetrable 
National Park; CAX, Caxiuana National Forest; COU, Cocha Cashu–Manu National 
Park; KRP, Korup National Park; MAS, Manaus; NAK, Nam Kading; NNN, Nouabali 
Ndoki; PSH, Pasoh Forest Reserve; VB, Volcan Barva; VIR, Virunga Massif; YAN, 
Yanachaga Chimillen National Park; YAS, Yasuni National Park. Map data credits: 
a, GIS Lounge; b,c, ref. 3.
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to multiple anthropogenic stressors offers a nuanced picture of the 
impacts of human activities on mammals. For instance, individual 
species responses to anthropogenic stressors that are not related to 
habitat characteristics (for example, hunting pressure) can be difficult 
to capture when focusing on species groups representing habitat 
preferences. Understanding species-specific variation can also guide 
conservation planning, as conservation efforts can be better focused 
on species recognized as vulnerable in the local context.

Assessments of biodiversity patterns often rely on static models 
which fail to capture the processes underlying patterns of change25. 
Dynamic modelling approaches permit direct assessment of biodi-
versity changes and the factors influencing them. Dynamic occupancy 
analysis, for example, uses data from multiple time periods (seasons or 
years) to model changes in species occurrence over time—‘occupancy 
dynamics’ sensu ref. 26—as arising from the process of local extinction 
and (re)colonization events across multiple sites within a study area26. 
In this framework, an occupied site within the study area can become 
unoccupied (local extinction) and can subsequently be recolonized. 
The species can remain extant in the study area even if it disappears at 
certain sites. Both local extinction (or its complement, survival) and 
colonization probabilities can be modelled as functions of environ-
mental variables, potentially yielding a process-based understanding 
of human and other impacts on wild populations. Additionally, like 
conventional single-season occupancy models, dynamic occupancy 
models account for imperfect detection26. Finally, Bayesian hierarchi-
cally structured multispecies frameworks permit assessment of species 
responses to anthropogenic processes and impacts simultaneously at 
the species, group and community levels.

Here, we quantified the effects of anthropogenic stressors on the 
occurrence dynamics of mammals. We used data from the largest stand-
ardized tropical-forest camera-trap monitoring system which included 
1,002 sites from 16 PAs (Fig. 1) and a hierarchical Bayesian dynamic 
multispecies occupancy model. We focused on 159 medium-to-large 
mammal species (>1 kg) and used habitat breadth information to clas-
sify species as specialists or generalists27. To model local colonization 
and survival probabilities we used spatial covariates extracted both at 
the local scale (home range) and landscape scale (10 km buffer around 
each camera-trap array28). Local-scale covariates capture processes and 
impacts inside the PA, whereas landscape-scale covariates capture pro-
cesses and impacts both inside and outside the PA. For two of the largest 
PAs, the landscape-scale covariates reflect processes mostly inside the 
PA (Supplementary Fig. 1). These covariates reflected anthropogenic 
stressors: deforestation (percentage of forest and division index as a 
measure of forest fragmentation) and human pressure (distance to 
protected area edge, distance to built-up areas and human population 
density). Additionally, we modelled detection probability as a function 
of three fixed covariates: maximum temperature, slope and species 
body mass. Specifically, we addressed two questions:

 (1) How do local- and landscape-scale anthropogenic stressors re-
late to local colonization and survival probabilities?

 (2) Do these relationships differ between habitat specialists and 
habitat generalists and among species of the same group?

Results
We compiled data on 159 species (388 populations) based on a total 
sampling effort of almost 170,000 camera-trap nights. Of these spe-
cies, 90 were classified as habitat specialists occurring in four or fewer 
suitable International Union for Conservation of Nature (IUCN) habitat 
types and 69 as habitat generalists occurring in five or more habitats 
(Supplementary Table 1). At the local scale, percentage of forest ranged 
from 0 to 100, distance to PA edge from 0.02 to 25.16 km and distance 
to built-up areas from 0.05 to 48.78 km (Supplementary Figs. 2–5).  
At the landscape scale, division index ranged from 0 to 0.98 and human 
population density (number of people per km2) from 0 to 575.10 people 
per km2 (Supplementary Fig. 6).

Overall, multiple covariates representing anthropogenic pro-
cesses and impacts at the local and landscape scales (percentage of  
forest, division index, human population density and distance to PA 
edge), had significant effects on occurrence dynamics which varied 
between generalists and specialists (Figs. 2 and 3), as well as among 
species within groups (Figs. 4 and 5 and Supplementary Figs. 7 and 8).  
Detection probability was negatively associated with maximum 
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Fig. 2 | Effect of habitat- and human pressure-related covariates on 
colonization and survival probability for habitat specialists and generalists. 
Plots include mean standardized β coefficients and 95% BCI. Covariates are 
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Fig. 3 | Mean predicted colonization probability for specialists and 
generalists in relation to habitat- and human pressure-related covariates.  
a, Colonization probability in relation to percentage of forest and division index. 
Low fragmentation represents the lowest large-scale division index value (0) and 
high fragmentation the highest division index value (0.98). b, Survival probability 
in relation to distance to PA edge and human population density. Low human 
population represents a human density of 4 people km−2 (mean value of the 
lower 50th percentile of human population values) and high human population 
a density of 189 people km−2 (mean value of the upper 50th percentile of human 
population values). Shaded areas indicate 95% BCI.
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temperature of the month when the camera trap was active (or months if 
the camera trap was active for more than one month) but positively associ-
ated with slope and body mass (Supplementary Table 2), although only 
slope had a significant effect on detection probability (β = 0.06; 95% Bayes-
ian credible intervals (95% BCI) = 0 to 0.12). We note that here in the results 
we use the term ‘effect’ in its statistical sense and do not infer causation.

Colonization probability
Local colonization—the probability that an empty camera-trap site 
becomes occupied by the subsequent year—was associated with 
habitat-related covariates more strongly for specialists than for gen-
eralists; that is, percentage of forest and division index had signifi-
cant effects on colonization only for specialists. However, covariates 
related to human pressure; that is, human population density and the 
interaction between human population density and percentage of for-
est, did not have detectable effects on either specialists or generalists  
(Fig. 2). Percentage of forest at the local scale had a positive effect on 
local colonization of specialists (β = 1.03; 95% BCI = 0.46–1.66). This 
positive effect was consistent for all specialist species, with only 6% 
of specialists (n = 5 of 90) revealing a non-significant effect (Fig. 4 and 
Supplementary Fig. 7). Division index also had a positive effect on colo-
nization (β = 0.44; 95% BCI = −0.11–0.99) but the interaction between 
percentage of forest (measured at the local scale) and division index 
(landscape scale) had a negative effect on colonization (β = −0.83; 95% 
BCI = −1.42 to −0.26; Fig. 2). This means that forest cover had a strong 
and positive effect on colonization in PAs where large-scale fragmenta-
tion was low but a weak negative effect when large-scale fragmentation 
was high (Fig. 3). The effect of the interaction between percentage of 
forest and division index on colonization was consistent for all special-
ists, although 51% (n = 46 of 90) did not show a significant species-level 
effect (Fig. 4 and Supplementary Fig. 7).

Survival probability
Local survival—the probability that an occupied camera-trap site 
remains occupied the following year—was associated with covariates 
representing human pressure. Distance to PA edge had a positive effect 
on survival although this effect was only statistically significant for 
specialist species (β = 0.25; 95% BCI = 0.05–0.45). This result was con-
sistent for all species of that group although only two species showed 
significant relationships (yellow-backed duiker, Cephalophus silvicultor 
and common opossum, Didelphis marsupialis) (Fig. 5 and Supplemen-
tary Fig. 8). Importantly, the interaction between distance to PA edge 
(measured at the local scale) and human population density (landscape 
scale) had a positive effect on survival but this effect was significant for 
generalists only (βgeneralists = 0.69; 95% BCI = 0.17–1.22; βspecialists = 0.11; 95% 
BCI = −0.44–0.65; Fig. 2). This means that generalists had a higher prob-
ability of surviving near the PA edge in areas with low human population 
density (large scale) and further from the PA edge in areas with high 
human density, whereas specialist species always had higher survival 
probabilities further from the PA edge (Fig. 3).

Differences within species groups
Within-group variation was lowest for the effect of percentage of for-
est on colonization and this was particularly the case for generalists 
(σ2

generalists = 0.15; 95% BCI = 0.01–0.38; Supplementary Fig. 9). The effect 
of percentage of forest on colonization was positive for all species in 
both groups although none of the generalist species had a significant 
effect. We found the strongest effect for the yellow-backed duiker 
(β = 1.39; 95% BCI = 0.61–2.33; Fig. 4 and Supplementary Fig. 7).

Within-group variation was highest for the effect of human popu-
lation density on both colonization and survival, especially for habitat 
specialists (σ2

colonization specialists = 2.22; 95% BCI = 1.50–3.18; Supplementary 
Fig. 9), which means that we observed substantial variation among 
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specialist species in their response to human population density. For 
example, we found strong negative effects of human population den-
sity on colonization for the ocelot, Leopardus pardalis (β = −4.72; 95% 
BCI = −6.81 to −2.94) and lowland paca, Cuniculus paca (β = −3.65; 95% 
BCI = −4.71 to −2.64; Fig. 4 and Supplementary Fig. 7), while we found 
strong positive effects for the sun bear, Helarctos malayanus (β = 2.62; 
95% BCI = 0.06–5.55) and Malayan porcupine, Hystrix brachyura (β = 2.19; 
95% BCI = 0.93–3.54; Fig. 4 and Supplementary Fig. 7). Regarding sur-
vival, we found for example, a strong negative effect for the wild Central 
American agouti, Dasyprocta punctata (β = −6.38; 95% BCI = −9.54 to 
−3.48) and a strong positive effect for the wild boar, Sus scrofa (β = 7.23; 
95% BCI = 4.72–10.01; Fig. 5 and Supplementary Fig. 8). The effect of 
division index on colonization also showed high within-group variation, 
especially for generalists (σ2

generalists = 1.59; 95% BCI = 1.18–2.12; Supple-
mentary Fig. 9). Nevertheless, we detected the strongest significant 
effects among specialist species: strongest negative coefficient in the 
black agouti (Dasyprocta fuliginosa) (β = −2.74; 95% BCI = −4.78 to −0.87) 
and the strongest positive coefficient in the white-nosed coati (Nasua 
narica; β = 3.92; 95% BCI = 2.75–5.30; Fig. 5 and Supplementary Fig. 7).

Discussion
We assessed how anthropogenic processes and impacts covary with 
mammal occurrence dynamics in tropical protected forests. Three 
key findings emerged. First, the probability of a site being colonized 
by specialists depended on forest cover at the local scale (within the 
PA) but also on habitat fragmentation at the landscape scale (within 
and outside the PA). Second, generalists had higher survival near the 
PA edge when human population density at the landscape scale was 
low. Finally, habitat specialists were particularly vulnerable to habi-
tat destruction, whereas generalists were vulnerable to other human 
pressures, although there was considerable variation among species 
within both specialist and generalist groups.

Colonization probability
Local colonization by habitat specialists was primarily associated with 
habitat-related covariates. Forest cover at the local scale was posi-
tively linked with colonization probability (H1ɣ, Table 1) and was the 
most important predictor of colonization, followed by the interaction 
between local-scale forest cover and landscape-scale fragmentation. 
This agrees with previous studies showing that responses to forest 
loss depend on ecological specialization29,30 and, reassuringly, sup-
ports the assumption that deforestation poses a greater threat to forest 
specialists than to generalists as the latter are more likely to persist 
in anthropogenic and heterogenous habitats21. Similar results have 
been documented for birds, for which a decrease in forest cover was 
negatively associated with the diversity of specialist taxa29. We note 
that our classification for habitat specialization should be understood 
as a relative measure, meaning that specialists are species occupy-
ing fewer habitat types than generalists and that different criteria can 
be used to define specialist species. Assessing how strictly specialist 
species (species which occur only in one type of habitat) respond to 
anthropogenic stressors would be interesting; however, our data did 
not contain sufficient species occupying a single habitat type (only  
19 species) to draw robust inferences (Supplementary Fig. 10).

Landscape context modulated the effect of forest cover on colo-
nization and, again, this was clearly detected only for habitat special-
ists. When landscape-scale fragmentation was low, the probability of 
colonizing a camera-trap site increased with increasing forest cover 
at the local scale. This relationship, however, disappeared when frag-
mentation increased. Most studies on the effects of fragmentation 
on extinction–colonization dynamics have focused on patch size and 
isolation31–33 and both positive and negative biodiversity responses to 
fragmentation have been documented19,20. Our results highlight that 
fragmentation at the landscape scale strongly mediates the relationship 
between colonization and percentage of forest and confirms that, as we 
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would suspect (H4ɣ, Table 1), the probability of a site being colonized 
is highest when local-scale forest cover is high and landscape-scale 
fragmentation is low.

Survival probability
We found that distance to the edge of the PA had a strong positive effect 
on local survival of specialists. This means that a site that was occupied 
in a given year was more likely to be occupied the next year if it was far 
from the PA edge, where forest cover is usually more continuous and 
where human activities, such as hunting, are lower (H2ϕ, Table 1). The 
strongest positive effects of distance to PA edge on colonization were 
found for generalist species such as jaguars (Panthera onca) which may 
reflect specific factors: in the case of the jaguar, its high persecution 

due to retaliatory hunting and the depletion of its main prey in areas 
accessible to humans34,35. Generalist species had higher survival near 
the PA edge when human population density was low. Such species 
are flexible and have broad habitat preferences and may benefit from 
having access to forest edges and to alternative environments. For 
example, wild boars (Sus scrofa) can benefit from croplands where they 
find food resources36. Nevertheless, the effect of distance to the PA edge 
on survival changed from negative to positive when human population 
density at the landscape scale increased thus supporting our hypothesis 
(H5ϕ, Table 1). This indicates that generalists had a higher probability 
of surviving at the core rather than near the edge of PAs in regions with 
high human population density (mean survival probability for gener-
alists near the PA edge decreased from 0.86 to 0.28 when comparing 

Table 1 | Covariates for explaining detection, colonization and survival probability

Covariate Description Spatial scale Data source Hypothesis

Detection (p)

 maxTemp Maximum temperature of the 
month(s) when the camera 
trap was active

Local: camera-trap site CRU-TS 4.03 (ref. 66) 
downscaled with 
WorldClim 2.1 (ref. 67)

H1p: mammals may be less active when it is too 
hot, thus decreasing p

 Slope Slope of the camera-trap site Local: camera-trap site R package elevatr68 H2p: p may be lower in camera-trap sites with 
higher topographical irregularity as the viewshed 
of a camera will be more restricted

 Mass Adult body mass Species covariate Ref. 69 H3p: large species may be easy to photograph70, 
however, they have large home range sizes and 
low population densities, thus, p may be lower 
than for small species

Colonization (ɣ)

 percForest Percentage of forest pixels in 
the buffer

Local: 300/600/2,100 m 
buffer around each 
camera-trap site

Ref. 3 H1ɣ: forests provide habitat for many species 
and ɣ may be high in camera-trap sites with high 
percentage of forest cover

 Div Probability that two random 
pixels in the landscape are 
not situated in the same 
forest patch

Landscape: 10 km buffer 
around camera-trap array

Ref. 3 H2ɣ: ɣ may be low if the landscape is fragmented 
(low dispersal capacity, high probability of being 
killed by humans)

 Pop Number of people per km2 Landscape: 10 km buffer 
around camera-trap array

2022 Global Human 
Settlement data71

H3ɣ: ɣ may be low if landscape-scale human 
pressure is high (hunting pressure, road kills and 
so on)

 percForest × Div Interaction between 
percentage of forest and 
division index

Local and landscape Ref. 3 H4ɣ: ɣ may be high if local-scale habitat 
availability is high and landscape-scale habitat 
is low

 percForest × Pop Interaction between 
percentage of forest and 
human population density

Local and landscape Ref. 3; 2022 Global Human 
Settlement Layer71

H5ɣ: ɣ may be high if local-scale habitat 
availability is high and landscape-scale human 
population density is low

Survival (ϕ)

 percForest Percentage of forest pixels in 
the buffer

Local: camera-trap site Ref. 3 H1ϕ: forests provide habitat for many species and 
ϕ may be low in camera-trap sites with low forest 
cover

 distPA Euclidean distance from the 
camera-trap site to the PA 
edgea

Local: camera-trap site World Database on 
Protected Areas72

H2ϕ: ϕ may be low in camera-trap sites near the 
PA edge

 distBuiltUp Euclidean distance from 
the camera-trap site to the 
closest built-up area

Local: camera-trap site 2022 Global Human 
Settlement Layer73

H3ϕ: built-up areas include roads and settlements 
(human access) and thus ϕ may be low in 
camera-trap sites near built-up areas

 Pop Number of people per km2 Landscape: 10 km buffer 
around camera-trap array

2022 Global Human 
Settlement Layer71

H4ϕ: ϕ may be low if landscape-scale human 
pressure is high (hunting pressure, road kills and 
so on)

 distPA × Pop Interaction between distance 
to PA edge and human 
population density

Local and landscape World Database on 
Protected Areas72; 2022 
Global Human Settlement 
Layer71

H5ϕ: ϕ may be low in sites near the PA edge, 
especially if landscape-scale human population 
density is high

 distBuiltUp × Pop Interaction between distance 
to built-up areas and human 
population density

Local and landscape 2022 Global Human 
Settlement Layer71,73

H6ϕ: ϕ may be low in sites near built-up areas, 
especially if landscape-scale human population 
density is high

aFor Manaus we calculated the Euclidean distance to the closest edge between forest and non-forest as a PA edge was not available.
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PAs with low and high human population density, Fig. 3). This was for 
example the case for the Central American agouti or the Abbott’s duiker 
(Cephalophus spadix), both heavily hunted species37,38. These results 
suggest that, while the edges of PAs provide suitable habitat for spe-
cies, human activities such as hunting may suppress these benefits. 
This is in line with previous research demonstrating that overhunting 
across the tropics reduces mammal abundances even inside PAs39 and 
highlights that the establishment of PAs may not always reduce the 
negative impacts of human activities within their boundaries40.

Differences within species groups
Aside from group level differences in how occupancy dynamics 
respond to anthropogenic stressors, we also found substantial varia-
tion among species. The highest within-group variation was observed 
in the responses to human population density and fragmentation. The 
effects of fragmentation on biodiversity remains unclear, with stud-
ies reporting both negative and positive effects19,20,41. We therefore 
expected to find variation across species regarding the effect of divi-
sion index on colonization probability. Generalist species showed the 
strongest variation, with the northern tamandua (Tamandua mexicana) 
showing a strong positive response to fragmentation, a finding that 
has been previously attributed to easier access to food resources such 
as ants or termites in fragmented landscapes42. Specialists, although 
to a lesser degree, also exhibited variation among species. For exam-
ple, colonization probability in fragmented landscapes was lowest for 
the Central American agouti and highest for the white-nosed coati. 
Even though according to our classification the coati is considered as 
a forest-dependent species, research has demonstrated that it can use 
and even inhabit anthropogenic landscapes43.

Some variation in species responses to human population density 
probably reflects hunting preferences. Hunters generally target larger 
species rather than species with specific habitat preferences44,45. Socio-
cultural beliefs or practices can also contribute to explain variation in 
species responses to human population density46. We therefore suspect 
that body mass and other potentially desirable traits in the contexts of 
the neighbouring human cultures, may help to characterize differences 
between species when assessing the effect of human population density 
on occurrence dynamics. We found the strongest significant nega-
tive effect of human population density on colonization for ocelots 
(Fig. 4), a species that is persecuted due to human–predator conflicts 
and fur trade47,48. By contrast, colonization in sun bear was positively 
related to human population density. Similar results were found in 
Borneo, where sun bears thrived in human-modified forests, when 
hunting pressure was low49. We detected the strongest positive effect 
of human population density on survival in wild boars, which are less 
hunted in some tropical forests of Southeast Asia because of religious 
taboos50, potentially explaining their high survival probability in areas 
with high human population density. Variation can also be explained 
by hunting methods, yet these patterns remain poorly investigated in 
tropical forests. For example, hunting with dogs is popular in some 
cultures and is known to selectively impact species such as armadillos 
(for example, Dasypus novemcinctus) or the common paca in Brazil51, 
as well as primates such as the colobus monkeys in the Udzungwa 
mountains of Tanzania52.

Other potential explanations for diverse responses include 
species-specific differences in resilience. For example, wild pigs (Sus 
spp.) have a high reproductive rate and are known to persist even when 
hunting pressure eliminates many other species that are slow to mature 
and reproduce46,53. Other potential explanations include management 
activities by PA staff and species-specific conservation measures. For 
instance, previous research demonstrated that six national parks in 
Central and East Africa were effective in protecting certain species, 
such as forest duikers, from hunting pressure54.

Despite differences between species groups and among species 
in the same group, we also found some common trends. All species 

showed a positive relationship between colonization and forest cover, 
highlighting the importance of forest protection inside PAs. The same 
applied to the interaction between forest cover and forest fragmenta-
tion: all species (independent of habitat specialization) were more 
likely to colonize a site when forest cover was high and fragmentation 
at the landscape scale was low.

Conclusions
PAs are key for conserving tropical biodiversity and can slow and 
prevent severe biodiversity declines55. Nonetheless, PAs comprise a 
fraction of the landscape and their conservation effectiveness may be 
affected by anthropogenic stressors acting at multiple scales includ-
ing outside the PA itself. Here, we found that occurrence dynamics of 
medium-to-large terrestrial mammals inside protected tropical forests 
can be explained by the presence of humans and their activities at both 
the local and landscape scale. All these anthropogenic stressors are 
likely to increase, given growing human populations and consump-
tion56. Our results suggest that, where possible, PAs should be combined 
with wider measures aimed at decreasing large-scale forest fragmenta-
tion, for example by defending and increasing landscape connectivity 
through habitat restoration57. Additionally, our findings suggest that 
forest protection and restoration should be especially emphasized to 
preserve populations of habitat specialists, while strategies aiming at 
diminishing the impacts of human activities (for example, enforcement 
of hunting regulations) should be especially prioritized to safeguard 
habitat generalists. While these conclusions followed expectations, 
it is reassuring to see them reflected in global patterns. What may be 
more unexpected and challenging is the variation among species in 
their response to anthropogenic stressors. This highlights the impor-
tance of further detailed species-level assessments to inform effective 
conservation strategies.

Methods
Camera-trap data
We used camera-trap data from 16 PAs in three biogeographic regions 
(Fig. 1 and Supplementary Table 3). Although IUCN management cat-
egory is not available for all PAs included in this study, most are clas-
sified under category II (national park; Supplementary Table 3). We 
highlight that this classification does not capture the type or effective-
ness of the management implemented in the PA but the official purpose 
of the protected area. Data were collected by the Tropical Ecology 
Assessment and Monitoring (TEAM) Network following a standard-
ized camera-trapping protocol58. TEAM camera-traps are deployed 
at 60–90 sites in each PA at a density of about one camera per 2 km2, 
although this density was lower in two PAs (one camera per km2). Mean 
distance between cameras was 1.32 km (s.d. = 0.19 km). Camera-traps 
were active for ~30 days during the dry season although some were 
active for less than 30 days due to damage or failure (mean = 36.16, 
minimum = 0, maximum = 80). Species accumulation curves indicate 
that this sampling effort was enough to detect most of the species in 
the community at each PA (Supplementary Fig. 11). Data were collected 
between 2008 and 2017 although the number of years varied per PA 
(minimum, 2 yr; maximum, 10 yr; mean = 6.5 yr). Here, we excluded 
camera-trap sites with inconsistencies in the date–time stamps and 
thus analysed data from 1,002 camera-trap sites (mean number of sites 
per PA, 62.63; minimum, 60; maximum, 89). Further details on the field 
methods can be found in Supplementary Methods 1.

Dynamic multispecies occupancy model
We used a hierarchical Bayesian dynamic multispecies occupancy 
model to describe species occurrence as a result of two underlying 
processes, colonization and survival26. We modelled colonization and 
survival probabilities as a function of covariates representing anthro-
pogenic processes and impacts (see below). As in single-season occu-
pancy models, the ecological process is related to the latent ecological 
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state (true occurrence, z) and the observation process to the observed 
data (detections/non-detections, y). In dynamic occupancy models 
two temporal scales are considered. Species occupancy at a given site 
(here each camera trap) is described for each primary period while the 
detection of a species is described for each secondary session within a 
primary period. In addition, dynamic occupancy models describe the 
changes in species occupancy among primary periods. Here, primary 
periods refer to seasons and secondary sessions to sampling occa-
sions. A season was composed of up to five sampling occasions and 
we defined each sampling occasion as seven consecutive camera-trap 
nights16,41. An important assumption of this model is that the system is 
closed within a season, meaning that the occupancy of a site remains 
unchanged among sampling occasions of the same season. The number 
of days during which a system is considered to be closed depends on 
species characteristics such as dispersal or generation time59. Here, 
we conservatively used a maximum of five sampling occasions per 
camera-trap site (35 camera-trap days) to ensure that the closure 
assumption was met. Another characteristic of dynamic occupancy 
models is that changes in occupancy are modelled as a first-order 
Markov process: the probability of a camera-trap site being occupied 
in a given year, depends on the occupancy state of the camera-trap 
site in the previous year, thus accounting for temporal correlation60. 
We did not account for the fact that colonization probabilities can be 
a function of the occupancy state at neighbouring camera-trap sites (a 
camera-trap site is more likely to be colonized if more of its neighbours 
were occupied the previous year), the distance among camera-trap 
sites, as well as species dispersal capabilities61.

We treated the regression parameters of each species as random 
effects, meaning that species-specific parameters were drawn from 
a group-specific distribution, with hyperparameters to be estimated 
(see below for the definition of our species groups). As we estimated 
parameters at the global level, not at the PA level, we drew param-
eters from two (one for each species group) global-level distributions.  
This allowed us to reduce uncertainty around species-specific estimates 
as there were more data available than if we had used a community- 
level distribution (PA level in our case) which is commonly done in 
studies from a single study area. We provide the formula for the random 
effects below.

We wished to compare habitat specialists versus habitat general-
ists thus we used habitat breadth information to classify species into 
specialists or generalists. Habitat breadth represents the number of 
IUCN suitable habitat types occupied by a species27. We defined spe-
cialists as those species with habitat breadth lower than or equal to 
the median (species with habitat breadth values between 1 and 4) and 
habitat generalists as those species with habitat breadth higher than 
the median (habitat breadth values between 5 and 26). As a pragmatic 
choice we used the median to classify species into groups as this yielded 
sufficient species in each group (Supplementary Fig. 10). Note that in 
our classification, specialists are not restricted to one type of habitat 
but rather occupy a lower number of habitat types than the generalists. 
Additionally, our classification is not limited to forest habitat catego-
ries only; however, given that all PAs are located in well-preserved 
forests (regardless of surrounding habitat), forest is listed as an IUCN 
habitat category for all but two of the species (Crocuta crocuta and 
Hystrix africaeaustralis).

For the first year, true occurrence of species k at site i, year 1,  
protected area p and biogeographic region b (zi1kpb) is drawn from a 
Bernoulli distribution:

zi1kpb ≈ Bernoulli (Ψ1kpb)

where Ψ1kpb represents the occupancy probability.
For all subsequent years (t > 1), true occurrence of species k at 

site i, year t, protected area p and biogeographic region b (zitkpb) is 
also represented by a Bernoulli trial and depends on whether the site 

was occupied or not the previous year (t − 1) and on the survival and 
colonization probability:

zitkpb|zit−1kpb ≈ Bernoulli(zit−1kpb × ϕikpb + (1 − zit−1kpb) × γikpb)

where the survival probability ϕikpb is the probability that an occupied 
site i during year t − 1 remains occupied during year t, while the coloniza-
tion probability γikpb is the probability that an unoccupied site i during 
year t − 1 becomes occupied by species k during year t.

Finally, in the observation process, detection of species k for occa-
sion j at site i, year t, protected area p and biogeographic region b is 
drawn from a Bernoulli distribution:

yijtkpb ≈ Bernoulli (zitkpb × pitkpb)

where pitkpb represents the detection probability and is conditional on 
the site being occupied, that is, zitkpb = 1.

Covariates on detection
We modelled detection probability with logistic regression using 
maximum temperature (maxTemp), slope and species body mass 
(Mass) as covariates (see Table 1 for hypotheses and Supplementary 
Methods 2). We calculated the two spatial covariates (maxTemp 
and Slope) for each camera-trap site and maxTemp varied among 
seasons because climate data with a higher temporal resolution 
(variation across sampling occasions) was not available at the desired  
spatial scale:

logit (pitkpb) = αpk + βp1k ×maxTempitpb + βp2k × Slopeipb + βp3 ×Massk

Where the intercept (αp) is the species-specific intercept defined as 
αpk ≈ Normal(µ,σ2), µ is the mean at the global level and σ2 the variance 
around that mean, also at the global level. The species-specific coef-
ficients (βp) describe the relationship between detection probability 
and covariates. Values βp1 and βp2were also sampled for each species 
from global-level normal distributions.

Covariates on colonization and survival
We modelled colonization (𝜸) and survival (𝜸) probability as functions of 
both local- and landscape-scale covariates. We included two-way inter-
actions between covariates at different scales to assess whether the 
effect of local-scale covariates on colonization and survival changed, 
depending on landscape context. We included interactions on the basis 
of our hypotheses (Table 1):

logit (γikpb) = αγk + βγ1k × percForestipb + βγ2k × Divpb + βγ3k × Poppb

+βγ4k × percForestipb × Divpb + βγ5k × percForestipb × Poppb

logit (ϕikpb) = αϕk + βϕ1k × percForestipb + βϕ2k × distPAipb

+βϕ3k × Poppb+βϕ4k × distBuiltUpipb + βϕ5k
×distPAipb × Poppb + βϕ6k × distBuiltUpipb × Poppb

where αɣ and αϕ are species-specific intercepts and βɣ and βϕ are 
species-specific coefficients describing the relationship between 
colonization/survival probability and the covariates. Species-specific 
parameters (intercepts and coefficients) were drawn from two 
group-specific normal distributions: αɣk ≈ Normal(µg,σ2

g), where µg is 
the group-specific mean at the global level and σ2

g the group-specific 
variance around that mean, also at the global level. Due to data limita-
tions and an already complex model, we did not allow survival and 
colonization probabilities to vary over time for a given species in a given 
site. Nonetheless, occupancy could change over time as it emerged 
from vital rates and past occupancy states.
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We used two habitat-related covariates reflecting forest loss and 
forest fragmentation: percentage of forest and division index. Division 
index is defined as the probability that two randomly selected pixels in 
the landscape are not situated in the same forest patch. Additionally, 
we used three covariates representing human pressure: distance to 
protected area edge, distance to built-up areas and human population 
density (Table 1 and Supplementary Methods 2). We also explored 
data representing management effectiveness of the PAs such as the 
‘management effectiveness tracking tool’62 but this information was 
unavailable for six PAs. We calculated percentage of forest (percForest),  
distance to protected area edge (distPA) and distance to built-up areas 
(distBuiltUp) at the local scale and division index (Div) and human 
population density (Pop) at the landscape scale.

We defined the local scale to calculate percentage of forest as 
a circular area of analysis or ‘buffer’ around each camera-trap site  
(Fig. 1) and selected the size of the buffer based on the home range 
sizes of the species included in this study (Supplementary Methods 3  
and Fig. 12). To avoid misunderstanding from double meanings, we 
use the term ‘buffer’ to represent a conceptual area considered in the 
analysis and it does not relate to any specific area of management. We 
used a 300 m radius buffer for species with a small home-range size, 
600 m radius for species with a medium home-range size and 2,100 m 
radius for species with a large home-range size. We excluded elephant 
species (Loxodonta Africana and Elephas maximus) because their 
large body and home-range sizes would require using a large buffer 
to assess the effect of forest cover on colonization and survival at the 
appropriate local scale. We used different buffer sizes to assess the 
effect of local-scale covariates on occupancy dynamics to facilitate 
comparison between species with different area requirements and 
home range sizes. We note, nonetheless, that the biological interpreta-
tion of ‘occupancy’—and thus local survival and colonization driving 
its dynamics—may differ across species. It may also be impacted by 
differences in camera-trap density across PAs (as mentioned above, 
two PAs were sampled at a density of one camera per km2). Specifically, 
for species with large home ranges and high dispersal capabilities, 
in combination with smaller camera trap spacing, occupancy may 
more closely represent use rather than occurrence63. For distance to 
protected area edge and distance to built-up areas, we calculated the 
Euclidean distance from the camera-trap site to the protected area 
edge and closest built-up area, respectively.

To define the landscape scale, we created a 10 km buffer around 
each camera-trap array within a protected area (Fig. 1)28. This buffer 
included both protected and unprotected area (Supplementary Fig. 1).  
In one PA, camera-traps were deployed in three separate clusters, 
with different landscape and anthropogenic characteristics (Manaus;  
Supplementary Fig. 1), thus resulting in three distinct (non-overlapping) 
landscape-scale buffers. In this case, we averaged the landscape-scale 
covariates across the three landscape-scale buffers and used the mean 
values in our models. To ensure that averaging values across landscapes 
did not unduly influence our results, we additionally run the same 
model considering each camera-trap array in Manaus as an individual 
PA. The β coefficients of this model remained similar and we decided to 
treat Manaus as a single PA (Supplementary Fig. 13). Human population 
density was defined as the average number of people living per km2 in 
the 10 km buffer surrounding each camera-trap array.

The values of time-varying covariates (percentage of forest, divi-
sion index, human population density and distance to built-up areas) 
remained fairly stable across years. Therefore, for these covariates, we 
used single values instead of time-matched covariates to avoid includ-
ing repeated values (Supplementary Figs. 2–6). For habitat-related 
covariates (percentage of forest and division index) we used the mean 
value over the sampling years for each PA. For human-related covariates 
(human population density and distance to built-up areas), we used 
data from the year 2010 or 2015, depending on the average sampling 
year of each PA (Supplementary Table 4).

For the analysis, we transformed covariates with extreme values 
(log transformation for slope, body mass, human population den-
sity, distance to protected area edge and distance to built-up areas) 
and standardized them to 0 mean and 1 standard deviation. Further 
details on the calculation of the spatial covariates included in the detec-
tion, colonization and survival model are provided in Supplementary  
Methods 2.

Model fitting
We fitted our Bayesian model using Markov chain Monte Carlo (MCMC) 
methods and the R package nimble64. We used NIMBLE default samplers 
except for the regression coefficients for ɣ and ϕ where we used a block 
sampling approach for each pair of α and β (random-walk block sam-
pler with multivariate normal proposal in NIMBLE) to improve MCMC 
efficiency (effective sample size/MCMC run time).

We used uninformative or weakly informative priors (model code 
in Supplementary Methods 4). We ran six chains, each of 400,000 
MCMC iterations and discarded the initial 80,000 iterations as burn-in. 
We visually inspected trace plots to assess convergence and mixing of 
the chains and calculated the Gelman–Rubin statistic for each param-
eter (R-hat values <1.1 indicated convergence)65. To assess the effect 
of covariates on colonization and survival probabilities we used the 
mean of the posterior distribution and the associated 95% BCI of each 
β coefficient. We report estimates at the global level meaning that they 
correspond to mean β coefficients at global level instead of coefficients 
for each protected area. Modifying the sampling effort (number of 
years or camera-trap sites in each PA) should not affect β coefficients 
but their uncertainty (wider or narrower 95% BCI).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Covariates included in our model are based on publicly available 
data and extracted values are in a Figshare repository (https://doi.
org/10.6084/m9.figshare.21947300), as well as the R script to subset 
and organize the data. The detection non-detection matrix is also avail-
able from Figshare and raw camera-trap data from the TEAM Network 
are available on the Wildlife Insights platform (wildlifeinsights.org).

Code availability
All code to reproduce the analysis has been archived on Figshare 
(https://doi.org/10.6084/m9.figshare.21947300).
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