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Protected areas (PAs) play a vital role in wildlife conservation. Nonetheless
thereis concern and uncertainty regarding how and at what spatial scales
anthropogenicstressors influence the occurrence dynamics of wildlife
populationsinside PAs. Here we assessed how anthropogenic stressors
influence occurrence dynamics of 159 mammal species in 16 tropical PAs

from three biogeographic regions. We quantified these relationships for
species groups (habitat specialists and generalists) and individual species. We
used long-term camera-trap data (1,002 sites) and fitted Bayesian dynamic
multispecies occupancy models to estimate local colonization (the probability
that a previously empty site is colonized) and local survival (the probability
that an occupied site remains occupied). Multiple covariates at both the local
scale and landscape scale influenced mammal occurrence dynamics, although
responses differed among species groups. Colonization by specialists
increased with local-scale forest cover when landscape-scale fragmentation
was low. Survival probability of generalists was higher near the edge thanin
the core of the PA when landscape-scale human population density was low
but the opposite occurred when population density was high. We conclude
that mammal occurrence dynamics areimpacted by anthropogenic stressors
acting at multiple scalesincluding outside the PA itself.

Land-use change is the primary driver of biodiversity loss, mainly
through the loss, degradation and fragmentation of habitat'* This is
particularly the case withthe conversion of species-rich tropical forests
to anthropogenic land uses**. With growing threats such as land-use
change, hunting and fires, protected areas (PAs) provide vital refuges
for many species as they can prevent biodiversity declines especially
in medium- and large-sized mammals>®. For this reason, the need to
increase and expand the coverage of PAs has been recognized globally

as a conservation priority (UN Biodiversity Conference, COP 15).
Concurrently, there is an urgent need to assess the degree to which
PAs can conserve wildlife, how different anthropogenic stressors may
affect the potential of PAs in protecting wildlife populations and how
this depends on the species and the location.

At least three factors hamper our ability to make robust conclu-
sions about the effectiveness of PAsin the tropics. First, availability of
biodiversity data across the tropics are scarce’®. Second, available data
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Fig.1|Distribution of study locations. a, Location of PAs (n =16) in tropical

and subtropical rain forests. b,c, Camera-trap sites and forest cover for

(Central Suriname Nature Reserve (CSN) and Udzungwa Mountains National Park

(UDZ)) at thelocal scale (600 m circular buffer around camera-trap site:

landscape scale (10 km buffer around camera-trap arrays) (c). CSN provides an
example of a protected area with a high percentage of forest cover (b and ¢) and
low forest fragmentation at the landscape scale (c). On the contrary, camera-

and high fragmentation at the landscape scale (c). BBS, Bukit Barisan; BCI, Barro
Colorado Nature Monument-Soberania National Park; BIF, Bwindi Impenetrable
National Park; CAX, Caxiuana National Forest; COU, Cocha Cashu-Manu National
Park; KRP, Korup National Park; MAS, Manaus; NAK, Nam Kading; NNN, Nouabali
Ndoki; PSH, Pasoh Forest Reserve; VB, Volcan Barva; VIR, Virunga Massif; YAN,
Yanachaga Chimillen National Park; YAS, Yasuni National Park. Map data credits:
a, GIS Lounge; b,c, ref. 3.

two PAs

s) (b) and

trap sites from UDZ show a larger variation in forest cover at the local scale (b)

oftenregister the presence or absence of a species at asingle pointin
time rather than trends over time’, which precludes monitoring and
assessment of changes'*". Finally, species responses to anthropogenic
pressures at a given location depend on the spatial extent (hereafter
scale) at which they are measured, yet biodiversity patterns often
reflect multiple processes that operate at different scales”™
for example, select certain habitat such as woodlands or grasslands
at alocal scale (250-530 m) but avoid agricultural and urban areas
at larger scales (7.6-9.9 km)®. This is important because species may
be affected by not only human presence and activities inside the PA

(at the local scale) but also at larger scales that encompass a

side the PA. Others'® investigated how forest cover at the local scale
(30-120 m) related to the occurrence dynamics of tropical mammals
and did not detect asignificant relationship. However, such results may

be confounded by larger landscape-scale conditions. For in

pantropical meta-analysis suggests that habitat destruction around

PAs is associated with biodiversity declines inside PAs". E

evidence of how anthropogenic stressors at multiple scales impact

the dynamics of biodiversity within tropical PAsis sparse.Inp

the extent to which processes at thelocal and landscape scale interact
and how suchinteractions affect tropical-forest mammal communities

remains largely unknown.

The scale at which environmental change impacts mammal popu-
lations has implications for PA management. For instance, if forest
fragmentation or human population density at the landscape scale
reduces local colonization, large-scale land-use planning and protec-
tion should be prioritized (inside and outside PAs). Examples are by
establishing buffer zones around PAs where only compatible land uses
arepermitted (such as low-intensity native polyculture instead of exotic
monoculture tree plantations) or by increasing connectivity to other
reserves. Similarly, hunting restrictions or regulations within PAs
(local scale) may be insufficient to halt the negative landscape-scale
effects of hunting and other humanimpacts'®. Alternatively, if habitat
withinthe PAsis the maininfluence on colonization, emphasis should
be placed on maintaining this protected habitat.

Anthropogenic threats do not act randomly, with some species
more affected than others. Additionally, the effects of anthropo-
genic activities on species can differ in the direction of their effect as
seen in both negative and positive responses to habitat fragmenta-
tion'>?°, For example, species that occupy only a few habitat types
(hereafter specialists) are at greater risk of extinction than those
that occupy many (hereafter generalists) and are also known to be
more sensitive to human-induced environmental changes such as
habitat loss*?*. Furthermore, assessing species-specific responses
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to multiple anthropogenic stressors offers a nuanced picture of the
impacts of human activities on mammals. For instance, individual
species responses to anthropogenic stressors that are not related to
habitat characteristics (for example, hunting pressure) can be difficult
to capture when focusing on species groups representing habitat
preferences. Understanding species-specific variation can also guide
conservation planning, as conservation efforts can be better focused
onspeciesrecognized as vulnerable in the local context.

Assessments of biodiversity patterns often rely on static models
which fail to capture the processes underlying patterns of change®.
Dynamic modelling approaches permit direct assessment of biodi-
versity changes and the factors influencing them. Dynamic occupancy
analysis, for example, uses datafrom multiple time periods (seasons or
years) to model changes in species occurrence over time—‘occupancy
dynamics’sensuref. 26—as arising from the process of local extinction
and (re)colonization events across multiple sites within astudy area®.
Inthis framework, an occupied site within the study area can become
unoccupied (local extinction) and can subsequently be recolonized.
The species canremain extantinthe study areaevenifit disappearsat
certain sites. Both local extinction (or its complement, survival) and
colonization probabilities can be modelled as functions of environ-
mental variables, potentially yielding a process-based understanding
of human and other impacts on wild populations. Additionally, like
conventional single-season occupancy models, dynamic occupancy
modelsaccount forimperfect detection®. Finally, Bayesian hierarchi-
cally structured multispecies frameworks permit assessment of species
responses to anthropogenic processes and impacts simultaneously at
the species, group and community levels.

Here, we quantified the effects of anthropogenic stressors on the
occurrence dynamics of mammals. We used data from the largest stand-
ardized tropical-forest camera-trap monitoring system whichincluded
1,002 sites from 16 PAs (Fig. 1) and a hierarchical Bayesian dynamic
multispecies occupancy model. We focused on 159 medium-to-large
mammalspecies (>1 kg) and used habitat breadth informationto clas-
sify species as specialists or generalists”. To model local colonization
and survival probabilities we used spatial covariates extracted both at
thelocalscale (homerange) and landscape scale (10 km buffer around
each camera-trap array”®). Local-scale covariates capture processes and
impactsinside the PA, whereas landscape-scale covariates capture pro-
cesses andimpactsbothinside and outside the PA. For two of the largest
PAs, the landscape-scale covariates reflect processes mostly inside the
PA (Supplementary Fig.1). These covariates reflected anthropogenic
stressors: deforestation (percentage of forest and division index as a
measure of forest fragmentation) and human pressure (distance to
protected areaedge, distance to built-up areas and human population
density). Additionally, we modelled detection probability as a function
of three fixed covariates: maximum temperature, slope and species
body mass. Specifically, we addressed two questions:

(1) How do local- and landscape-scale anthropogenic stressors re-
late to local colonization and survival probabilities?

(2) Do these relationships differ between habitat specialists and
habitat generalists and among species of the same group?

Results

We compiled data on 159 species (388 populations) based on a total
sampling effort of almost 170,000 camera-trap nights. Of these spe-
cies, 90 were classified as habitat specialists occurringin four or fewer
suitable International Union for Conservation of Nature (IUCN) habitat
types and 69 as habitat generalists occurring in five or more habitats
(Supplementary Table1). At the local scale, percentage of forest ranged
from0t0100, distance to PA edge from 0.02 to 25.16 km and distance
to built-up areas from 0.05 to 48.78 km (Supplementary Figs. 2-5).
Atthelandscapescale, divisionindex ranged from 0 to 0.98 and human
population density (number of people per km?) from 0 t0 575.10 people
per km? (Supplementary Fig. 6).
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Fig.2 | Effect of habitat- and human pressure-related covariates on
colonization and survival probability for habitat specialists and generalists.
Plots include mean standardized g coefficients and 95% BCI. Covariates are
percentage of forest (percForest), division index (Div), human population
density (Pop), distance to built-up (distBuiltUp) and distance to PA edge (distPA).
The effect of a covariate was considered significant (marked with *) when the 95%
BCl did not overlap zero (dashed vertical lines).
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Fig. 3| Mean predicted colonization probability for specialists and
generalists in relation to habitat- and human pressure-related covariates.

a, Colonization probability in relation to percentage of forest and division index.
Low fragmentation represents the lowest large-scale division index value (0) and
high fragmentation the highest division index value (0.98). b, Survival probability
inrelation to distance to PA edge and human population density. Low human
population represents ahuman density of 4 people km™(mean value of the

lower 50th percentile of human population values) and high human population
adensity of 189 people km™ (mean value of the upper 50th percentile of human
population values). Shaded areas indicate 95% BCI.

Overall, multiple covariates representing anthropogenic pro-
cesses and impacts at the local and landscape scales (percentage of
forest, division index, human population density and distance to PA
edge), had significant effects on occurrence dynamics which varied
between generalists and specialists (Figs. 2 and 3), as well as among
species within groups (Figs. 4 and 5 and Supplementary Figs. 7 and 8).
Detection probability was negatively associated with maximum

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02060-6

Division

0.4+

0.4
Dasyprocta
fuliginosa

Nasua

narica
m/ Tamandua
mexicana

i Leopardus
0.3 -7 Loveaie

0.2

m Cuniculus
paca

Human population

Percentage of forest

Helarctos
matayancs PR

Cephalophus Cephalophus
harveyi e o

brachyura

1
1
1
1
1
1
1
Hystrix 1
1
1
1
1
1
1
]
T

-2 o] 2 4 -5.0 -2.5 0 2.5 0 0.5 1.0
B coefficient B coefficient B coefficient
Percentage of forest x division Percentage of forest x human population

1 1

15 4 , y
1 1

1 9 A 1

1 1

10 4 i el 1 (R Papio anubis 1
1 1

1 61 1

1 1

1 1

5 1 |
1 39 1

1 1

1 1

1 1

O 7\ L T I.\ T \I 0 L
-1.2 -0.9 -0.6 -0.3 0 -0.4 0 0.4
B coefficient B coefficient
Generalists = Specialists

Fig. 4 | Density plot for species-specific ff coefficients for colonization
probability. Each coloured line on the x axis represents one distinct species, with
the strongest significant effects highlighted with black silhouettes. Uncertainties
associated with group-specific parameters are provided in Fig. 2 and
Supplementary Fig. 9. Uncertainties associated with species-specific estimates
areincluded in Supplementary Fig. 7. Dashed lines indicate a value of zero for the

B coefficient. Species silhouette images credit: Phylopic (Dasyproctafuliginosa,
Helarctos malayanusa, Cuniculus paca and Papio anubis by Margot Michaud;
Tamandua mexicanaby Xavier A.Jenkins; Nasua naricaby RS; Leopardus pardalis
by Gabriela Palomo-Munoz; Hystrix brachyuraby T. Michael Keesey; Cephalophus
harveyi and Cephalophus silvicultor by Kai Caspar; Potamochoerus larvatus by
Ferran Sayol).

temperature of the month when the cameratrap wasactive (or months if
the cameratrap was active for more than one month) but positively associ-
ated with slope and body mass (Supplementary Table 2), although only
slope had asignificant effect on detection probability (8 = 0.06; 95% Bayes-
iancredibleintervals (95% BCl) = 0t0 0.12). We note that herein the results
we use the term ‘effect’inits statistical sense and do notinfer causation.

Colonization probability

Local colonization—the probability that an empty camera-trap site
becomes occupied by the subsequent year—was associated with
habitat-related covariates more strongly for specialists than for gen-
eralists; that is, percentage of forest and division index had signifi-
cant effects on colonization only for specialists. However, covariates
related to human pressure; thatis, human population density and the
interaction between human population density and percentage of for-
est, did not have detectable effects on either specialists or generalists
(Fig. 2). Percentage of forest at the local scale had a positive effect on
local colonization of specialists (8 =1.03; 95% BCI = 0.46-1.66). This
positive effect was consistent for all specialist species, with only 6%
of specialists (n = 50f 90) revealing anon-significant effect (Fig. 4 and
Supplementary Fig. 7). Divisionindex also had a positive effect on colo-
nization (8= 0.44; 95% BCI=-0.11-0.99) but the interaction between
percentage of forest (measured at the local scale) and division index
(landscape scale) had a negative effect on colonization (8 =-0.83; 95%
BCI=-1.42t0-0.26; Fig.2). This means that forest cover had a strong
and positive effect on colonizationin PAs where large-scale fragmenta-
tionwas low but aweak negative effect when large-scale fragmentation
was high (Fig. 3). The effect of the interaction between percentage of
forestand divisionindex on colonization was consistent for all special-
ists, although 51% (n = 46 0of 90) did not show asignificant species-level
effect (Fig. 4 and Supplementary Fig. 7).

Survival probability

Local survival—the probability that an occupied camera-trap site
remains occupied the following year—was associated with covariates
representing human pressure. Distance to PA edge had a positive effect
on survival although this effect was only statistically significant for
specialist species (8= 0.25; 95% BCI = 0.05-0.45). This result was con-
sistent for all species of that group although only two species showed
significantrelationships (yellow-backed duiker, Cephalophus silvicultor
and common opossum, Didelphis marsupialis) (Fig.5and Supplemen-
tary Fig. 8). Importantly, the interaction between distance to PA edge
(measured at the local scale) and human population density (landscape
scale) had a positive effect on survival but this effect was significant for
generalists only (Bgeneraiises = 0.69; 95% BCI = 0.17-1.22; Bpeciaises = 0.11;95%
BCl=-0.44-0.65; Fig.2). Thismeans that generalists had a higher prob-
ability of surviving near the PA edge in areas with low human population
density (large scale) and further from the PA edge in areas with high
human density, whereas specialist species always had higher survival
probabilities further from the PA edge (Fig. 3).

Differences within species groups
Within-group variation was lowest for the effect of percentage of for-
est on colonization and this was particularly the case for generalists
(0 generalists = 0.15;95% BC1 = 0.01-0.38; Supplementary Fig. 9). The effect
of percentage of forest on colonization was positive for all species in
both groups although none of the generalist species had a significant
effect. We found the strongest effect for the yellow-backed duiker
(8=1.39;95% BCI = 0.61-2.33; Fig. 4 and Supplementary Fig. 7).
Within-group variation was highest for the effect of human popu-
lation density on both colonization and survival, especially for habitat
specialists (0% gjonizationspeciatisis = 2-22; 95% BCI =1.50-3.18; Supplementary
Fig. 9), which means that we observed substantial variation among
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Fig. 8. Dashed lines indicate a value of zero for the S coefficient. Species
silhouette images credit: Phylopic (Sus scrofa by Steven Traver; Panthera onca
and Dasyprocta punctata by Gabriela Palomo-Munoz, Cephalophus callipygus
and Cephalophus spadix by Kai Caspar).

specialist species in their response to human population density. For
example, we found strong negative effects of human population den-
sity on colonization for the ocelot, Leopardus pardalis (f =-4.72; 95%
BCI=-6.81t0-2.94) and lowland paca, Cuniculus paca (= -3.65; 95%
BCI=-4.71t0 -2.64; Fig. 4 and Supplementary Fig. 7), while we found
strong positive effects for the sun bear, Helarctos malayanus (=2.62;
95%BCI =0.06-5.55) and Malayan porcupine, Hystrix brachyura (=2.19;
95% BCI=0.93-3.54; Fig. 4 and Supplementary Fig. 7). Regarding sur-
vival, we found for example, a strong negative effect for the wild Central
American agouti, Dasyprocta punctata (f=-6.38; 95% BCl=-9.54 to
-3.48) and astrong positive effect for the wild boar, Sus scrofa (=7.23;
95% BCl =4.72-10.01; Fig. 5 and Supplementary Fig. 8). The effect of
divisionindex on colonization also showed high within-group variation,
especially for generalists (0generaiisis = 1.59; 95% BCl = 1.18-2.12; Supple-
mentary Fig. 9). Nevertheless, we detected the strongest significant
effects among specialist species: strongest negative coefficient in the
blackagouti (Dasyproctafuliginosa) (§=-2.74;95%BCl =-4.78 t0-0.87)
and the strongest positive coefficient in the white-nosed coati (NVasua
narica; $=3.92;95%BCI =2.75-5.30; Fig. 5 and Supplementary Fig. 7).

Discussion

We assessed how anthropogenic processes and impacts covary with
mammal occurrence dynamics in tropical protected forests. Three
key findings emerged. First, the probability of a site being colonized
by specialists depended on forest cover at the local scale (within the
PA) but also on habitat fragmentation at the landscape scale (within
and outside the PA). Second, generalists had higher survival near the
PA edge when human population density at the landscape scale was
low. Finally, habitat specialists were particularly vulnerable to habi-
tat destruction, whereas generalists were vulnerable to other human
pressures, although there was considerable variation among species
within both specialist and generalist groups.

Colonization probability
Local colonization by habitat specialists was primarily associated with
habitat-related covariates. Forest cover at the local scale was posi-
tively linked with colonization probability (H1,, Table 1) and was the
mostimportant predictor of colonization, followed by the interaction
between local-scale forest cover and landscape-scale fragmentation.
This agrees with previous studies showing that responses to forest
loss depend on ecological specialization®**° and, reassuringly, sup-
portsthe assumption that deforestation poses agreater threat to forest
specialists than to generalists as the latter are more likely to persist
in anthropogenic and heterogenous habitats™. Similar results have
been documented for birds, for which a decrease in forest cover was
negatively associated with the diversity of specialist taxa®’. We note
that our classification for habitat specialization should be understood
as a relative measure, meaning that specialists are species occupy-
ing fewer habitat types than generalists and that different criteria can
be used to define specialist species. Assessing how strictly specialist
species (species which occur only in one type of habitat) respond to
anthropogenic stressors would be interesting; however, our data did
not contain sufficient species occupying a single habitat type (only
19 species) to draw robust inferences (Supplementary Fig. 10).
Landscape context modulated the effect of forest cover on colo-
nization and, again, this was clearly detected only for habitat special-
ists. When landscape-scale fragmentation was low, the probability of
colonizing a camera-trap site increased with increasing forest cover
atthelocal scale. This relationship, however, disappeared when frag-
mentation increased. Most studies on the effects of fragmentation
on extinction-colonization dynamics have focused on patch size and
isolation®** and both positive and negative biodiversity responses to
fragmentation have been documented'*. Our results highlight that
fragmentation at the landscape scale strongly mediates the relationship
between colonization and percentage of forest and confirms that, aswe
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Table 1| Covariates for explaining detection, colonization and survival probability

Covariate Description Spatial scale Data source Hypothesis
Detection (p)
maxTemp Maximum temperature of the  Local: camera-trap site CRU-TS 4.03 (ref. 66) H1,: mammals may be less active when it is too
month(s) when the camera downscaled with hot, thus decreasing p
trap was active WorldClim 2.1 (ref. 67)

Slope Slope of the camera-trap site  Local: camera-trap site R package elevatr® H2,: p may be lower in camera-trap sites with
higher topographical irregularity as the viewshed
of a camera will be more restricted

Mass Adult body mass Species covariate Ref. 69 H3,: large species may be easy to photograph’®,
however, they have large home range sizes and
low population densities, thus, p may be lower
than for small species

Colonization (y)

percForest Percentage of forest pixelsin  Local: 300/600/2,100m Ref. 3 H1,: forests provide habitat for many species

the buffer buffer around each and y may be high in camera-trap sites with high
camera-trap site percentage of forest cover

Div Probability that two random Landscape: 10km buffer Ref. 3 H2,: y may be low if the landscape is fragmented

pixels in the landscape are around camera-trap array (low dispersal capacity, high probability of being
not situated in the same killed by humans)
forest patch
Pop Number of people per km? Landscape: 10km buffer 2022 Global Human H3,: y may be low if landscape-scale human
around camera-trap array  Settlement data” pressure is high (hunting pressure, road kills and
so on)
percForestxDiv Interaction between Local and landscape Ref. 3 H4,: y may be high if local-scale habitat

percentage of forest and
division index

availability is high and landscape-scale habitat
is low

percForestxPop  Interaction between Local and landscape Ref. 3; 2022 Global Human  H5,: y may be high if local-scale habitat
percentage of forest and Settlement Layer” availability is high and landscape-scale human
human population density population density is low
Survival (¢)
percForest Percentage of forest pixelsin  Local: camera-trap site Ref. 3 H1,: forests provide habitat for many species and
the buffer ¢ may be low in camera-trap sites with low forest
cover
distPA Euclidean distance from the Local: camera-trap site World Database on H2,: ¢ may be low in camera-trap sites near the
camera-trap site to the PA Protected Areas’ PA edge
edge’
distBuiltUp Euclidean distance from Local: camera-trap site 2022 Global Human H3,: built-up areas include roads and settlements
the camera-trap site to the Settlement Layer’”® (human access) and thus ¢ may be low in
closest built-up area camera-trap sites near built-up areas
Pop Number of people per km? Landscape: 10km buffer 2022 Global Human H4,: ¢ may be low if landscape-scale human
around camera-traparray  Settlement Layer” pressure is high (hunting pressure, road kills and
soon)
distPAxPop Interaction between distance Local and landscape World Database on H5,: ¢ may be low in sites near the PA edge,

to PA edge and human
population density

Protected Areas’’; 2022
Global Human Settlement
Layer”

especially if landscape-scale human population
density is high

Interaction between distance
to built-up areas and human
population density

distBuiltUpxPop

Local and landscape

2022 Global Human
Settlement Layer”"”®

H6,: ¢ may be low in sites near built-up areas,
especially if landscape-scale human population
density is high

For Manaus we calculated the Euclidean distance to the closest edge between forest and non-forest as a PA edge was not available.

would suspect (H4, Table 1), the probability of a site being colonized
is highest when local-scale forest cover is high and landscape-scale
fragmentationis low.

Survival probability

Wefound that distance to the edge of the PA had a strong positive effect
onlocalsurvival of specialists. This means that a site that was occupied
inagivenyear was more likely to be occupied the next year if it was far
from the PA edge, where forest cover is usually more continuous and
where human activities, such as hunting, are lower (H2,, Table 1). The
strongest positive effects of distance to PA edge on colonization were
found for generalist species such as jaguars (Panthera onca) which may
reflect specific factors: in the case of the jaguar, its high persecution

due toretaliatory hunting and the depletion of its main prey in areas
accessible to humans®**. Generalist species had higher survival near
the PA edge when human population density was low. Such species
are flexible and have broad habitat preferences and may benefit from
having access to forest edges and to alternative environments. For
example, wild boars (Sus scrofa) can benefit from croplands where they
find food resources®. Nevertheless, the effect of distance to the PA edge
onsurvival changed from negative to positive when human population
density at the landscape scaleincreased thus supporting our hypothesis
(H5,, Table 1). This indicates that generalists had a higher probability
of surviving at the core rather than near the edge of PAs inregions with
high human population density (mean survival probability for gener-
alists near the PA edge decreased from 0.86 to 0.28 when comparing
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PAs with low and high human population density, Fig. 3). This was for
example the case for the Central American agoutior the Abbott’s duiker
(Cephalophus spadix), both heavily hunted species®>®. These results
suggest that, while the edges of PAs provide suitable habitat for spe-
cies, human activities such as hunting may suppress these benefits.
Thisisinline with previous research demonstrating that overhunting
across the tropics reduces mammal abundances eveninside PAs* and
highlights that the establishment of PAs may not always reduce the
negative impacts of human activities within their boundaries*’.

Differences within species groups

Aside from group level differences in how occupancy dynamics
respond to anthropogenic stressors, we also found substantial varia-
tionamong species. The highest within-group variation was observed
inthe responses to human population density and fragmentation. The
effects of fragmentation on biodiversity remains unclear, with stud-
ies reporting both negative and positive effects'>***, We therefore
expected to find variation across species regarding the effect of divi-
sionindex on colonization probability. Generalist species showed the
strongest variation, with the northern tamandua (Tamandua mexicana)
showing a strong positive response to fragmentation, a finding that
hasbeen previously attributed to easier access to food resources such
as ants or termites in fragmented landscapes*’. Specialists, although
to alesser degree, also exhibited variation among species. For exam-
ple, colonization probability in fragmented landscapes was lowest for
the Central American agouti and highest for the white-nosed coati.
Eventhough according to our classification the coatiis considered as
aforest-dependent species, research has demonstrated thatit can use
and even inhabit anthropogenic landscapes®.

Some variationin species responses to human population density
probably reflects hunting preferences. Hunters generally target larger
speciesrather than species with specific habitat preferences***. Socio-
cultural beliefs or practices can also contribute to explain variationin
species responses to human population density*®. We therefore suspect
that body mass and other potentially desirable traits in the contexts of
the neighbouring human cultures, may help to characterize differences
betweenspecies when assessing the effect of human population density
on occurrence dynamics. We found the strongest significant nega-
tive effect of human population density on colonization for ocelots
(Fig.4), aspecies thatis persecuted due to human-predator conflicts
and fur trade**®, By contrast, colonization in sun bear was positively
related to human population density. Similar results were found in
Borneo, where sun bears thrived in human-modified forests, when
hunting pressure was low*’. We detected the strongest positive effect
of human population density on survival in wild boars, which are less
huntedinsometropical forests of Southeast Asiabecause of religious
taboos’, potentially explaining their high survival probability in areas
with high human population density. Variation can also be explained
by hunting methods, yet these patterns remain poorly investigatedin
tropical forests. For example, hunting with dogs is popular in some
cultures andis knownto selectively impact species such as armadillos
(for example, Dasypus novemcinctus) or the common paca in Brazil*,
as well as primates such as the colobus monkeys in the Udzungwa
mountains of Tanzania*.

Other potential explanations for diverse responses include
species-specific differences in resilience. For example, wild pigs (Sus
spp.) haveahighreproductive rate and are known to persist even when
hunting pressure eliminates many other species that are slow to mature
and reproduce’®*. Other potential explanations include management
activities by PA staff and species-specific conservation measures. For
instance, previous research demonstrated that six national parks in
Central and East Africa were effective in protecting certain species,
such as forest duikers, from hunting pressure™.

Despite differences between species groups and among species
in the same group, we also found some common trends. All species

showed a positive relationship between colonization and forest cover,
highlighting theimportance of forest protection inside PAs. The same
appliedtotheinteraction between forest cover and forest fragmenta-
tion: all species (independent of habitat specialization) were more
likely to colonize asite when forest cover was high and fragmentation
atthe landscape scale was low.

Conclusions

PAs are key for conserving tropical biodiversity and can slow and
prevent severe biodiversity declines®. Nonetheless, PAs comprise a
fraction of the landscape and their conservation effectiveness may be
affected by anthropogenic stressors acting at multiple scales includ-
ing outside the PA itself. Here, we found that occurrence dynamics of
medium-to-large terrestrialmammals inside protected tropical forests
canbe explained by the presence of humans and their activities atboth
the local and landscape scale. All these anthropogenic stressors are
likely to increase, given growing human populations and consump-
tion®. Our results suggest that, where possible, PAs should be combined
with wider measures aimed at decreasing large-scale forest fragmenta-
tion, for example by defending and increasing landscape connectivity
through habitat restoration”. Additionally, our findings suggest that
forest protectionand restorationshould be especially emphasized to
preserve populations of habitat specialists, while strategies aiming at
diminishing theimpacts of humanactivities (for example, enforcement
of hunting regulations) should be especially prioritized to safeguard
habitat generalists. While these conclusions followed expectations,
itis reassuring to see them reflected in global patterns. What may be
more unexpected and challenging is the variation among species in
their response to anthropogenic stressors. This highlights the impor-
tance of further detailed species-level assessments to inform effective
conservation strategies.

Methods

Camera-trap data

We used camera-trap datafrom 16 PAsin three biogeographic regions
(Fig.1and Supplementary Table 3). Although IUCN management cat-
egory is not available for all PAs included in this study, most are clas-
sified under category Il (national park; Supplementary Table 3). We
highlight that this classification does not capture the type or effective-
ness of the managementimplemented in the PA but the official purpose
of the protected area. Data were collected by the Tropical Ecology
Assessment and Monitoring (TEAM) Network following a standard-
ized camera-trapping protocol’®. TEAM camera-traps are deployed
at 60-90 sites in each PA at a density of about one camera per 2 km?,
although this density was lower in two PAs (one camera per km?). Mean
distance between cameraswas1.32 km (s.d. = 0.19 km). Camera-traps
were active for ~30 days during the dry season although some were
active for less than 30 days due to damage or failure (mean =36.16,
minimum = 0, maximum = 80). Species accumulation curvesindicate
that this sampling effort was enough to detect most of the species in
the community at each PA (Supplementary Fig. 11). Data were collected
between 2008 and 2017 although the number of years varied per PA
(minimum, 2 yr; maximum, 10 yr; mean = 6.5 yr). Here, we excluded
camera-trap sites with inconsistencies in the date-time stamps and
thusanalysed datafrom1,002 camera-trap sites (mean number of sites
perPA, 62.63; minimum, 60; maximum, 89). Further details on the field
methods can be found in Supplementary Methods 1.

Dynamic multispecies occupancy model

We used a hierarchical Bayesian dynamic multispecies occupancy
model to describe species occurrence as a result of two underlying
processes, colonization and survival®*. We modelled colonization and
survival probabilities as a function of covariates representing anthro-
pogenic processes and impacts (see below). As in single-season occu-
pancy models, the ecological processisrelated to the latent ecological
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state (true occurrence, z) and the observation process to the observed
data (detections/non-detections, y). In dynamic occupancy models
two temporal scales are considered. Species occupancy atagivensite
(hereeach cameratrap)is described for each primary period while the
detectionof aspeciesisdescribed for each secondary session withina
primary period. In addition, dynamic occupancy models describe the
changesin species occupancy among primary periods. Here, primary
periods refer to seasons and secondary sessions to sampling occa-
sions. A season was composed of up to five sampling occasions and
we defined each sampling occasion as seven consecutive camera-trap
nights'®*, Animportant assumption of this modelis that the systemis
closed within a season, meaning that the occupancy of a site remains
unchanged among sampling occasions of the same season. The number
of days during which a system is considered to be closed depends on
species characteristics such as dispersal or generation time®. Here,
we conservatively used a maximum of five sampling occasions per
camera-trap site (35 camera-trap days) to ensure that the closure
assumption was met. Another characteristic of dynamic occupancy
models is that changes in occupancy are modelled as a first-order
Markov process: the probability of a camera-trap site being occupied
in a given year, depends on the occupancy state of the camera-trap
site in the previous year, thus accounting for temporal correlation®.
We did not account for the fact that colonization probabilities can be
afunction of the occupancy state at neighbouring camera-trap sites (a
camera-trap site is morelikely to be colonized if more of its neighbours
were occupied the previous year), the distance among camera-trap
sites, as well as species dispersal capabilities®.

We treated the regression parameters of each species asrandom
effects, meaning that species-specific parameters were drawn from
a group-specific distribution, with hyperparameters to be estimated
(see below for the definition of our species groups). As we estimated
parameters at the global level, not at the PA level, we drew param-
eters fromtwo (one for each species group) global-level distributions.
Thisallowed us toreduce uncertainty around species-specific estimates
as there were more data available than if we had used a community-
level distribution (PA level in our case) which is commonly done in
studies fromasingle study area. We provide the formula for the random
effects below.

We wished to compare habitat specialists versus habitat general-
ists thus we used habitat breadth information to classify species into
specialists or generalists. Habitat breadth represents the number of
IUCN suitable habitat types occupied by a species”. We defined spe-
cialists as those species with habitat breadth lower than or equal to
the median (species with habitat breadth values between1and 4) and
habitat generalists as those species with habitat breadth higher than
the median (habitat breadth values between 5and 26). As apragmatic
choice we used the median to classify speciesinto groups as thisyielded
sufficient speciesin each group (Supplementary Fig.10). Note thatin
our classification, specialists are not restricted to one type of habitat
butrather occupy alower number of habitat types than the generalists.
Additionally, our classification is not limited to forest habitat catego-
ries only; however, given that all PAs are located in well-preserved
forests (regardless of surrounding habitat), forest s listed asan [UCN
habitat category for all but two of the species (Crocuta crocuta and
Hystrix africaeaustralis).

For the first year, true occurrence of species k at site i, year 1,
protected area p and biogeographic region b (z;,,) is drawn from a
Bernoullidistribution:

Zinkpp ~ Bernoulli (@)

where ¥, represents the occupancy probability.

For all subsequent years (¢ >1), true occurrence of species k at
site i, year t, protected area p and biogeographic region b (z;4,) is
also represented by a Bernoulli trial and depends on whether the site

was occupied or not the previous year (¢ — 1) and on the survival and
colonization probability:

Zickpb Zie—1ipp ~ Bernoulli(Zie_ypp X Pigpp + (1 — Zie—1ips) X Vikps)

where the survival probability ¢, is the probability that an occupied
siteiduringyear ¢ - 1remains occupied during year ¢, while the coloniza-
tion probability y,,, is the probability that an unoccupiedsiteiduring
year t - 1becomes occupied by species k during year ¢.

Finally,in the observation process, detection of species k for occa-
sionj at site {, year t, protected area p and biogeographic region b is
drawn from a Bernoulli distribution:

Yijekpp ~ Bernoulli (Ziups X Piripb)

where p,,,,, represents the detection probability and is conditional on
thessite being occupied, that s, z,,, = 1.

Covariates on detection

We modelled detection probability with logistic regression using
maximum temperature (maxTemp), slope and species body mass
(Mass) as covariates (see Table 1 for hypotheses and Supplementary
Methods 2). We calculated the two spatial covariates (maxTemp
and Slope) for each camera-trap site and maxTemp varied among
seasons because climate data with a higher temporal resolution
(variation across sampling occasions) was not available at the desired
spatial scale:

logit (Pickps) = aPx + Bpy, x maxTempy,,, + Bp,, x Slope,,, + fp; x Mass;

Where the intercept (ap) is the species-specific intercept defined as
ap, = Normal(u,0%), pris the mean at the global level and ¢ the variance
around that mean, also at the global level. The species-specific coef-
ficients (8p) describe the relationship between detection probability
and covariates. Values Bp, and p,were also sampled for each species
fromglobal-level normal distributions.

Covariates on colonization and survival

We modelled colonization (y) and survival (y) probability as functions of
bothlocal-andlandscape-scale covariates. We included two-way inter-
actions between covariates at different scales to assess whether the
effect of local-scale covariates on colonization and survival changed,
depending onlandscape context. Weincluded interactions on the basis
of our hypotheses (Table1):

logit (Viups) = avi + By, x percForest;,, + Bya, x Divp, + Bys, x Pop,,,

+Bys, x percForest,,, x Divpy, + Bys, X percForest,,, x Pop,,

logit (Pups) = aPi + By, x percForest,,, + Sy, x distPAyp
+ B3, X Pop,, +Bgs, x distBuiltUp,,, + Bs,
x distPA,, x Pop,, + Be, % distBuiltUpipb x Pop,,;,

where ay and a¢ are species-specific intercepts and Sy and B¢ are
species-specific coefficients describing the relationship between
colonization/survival probability and the covariates. Species-specific
parameters (intercepts and coefficients) were drawn from two
group-specific normal distributions: ary, = Normal(u,0%,), where i, is
the group-specific mean at the global level and ¢, the group-specific
variance around that mean, also at the global level. Due to data limita-
tions and an already complex model, we did not allow survival and
colonization probabilities to vary over time for agiven speciesinagiven
site. Nonetheless, occupancy could change over time as it emerged
fromvital rates and past occupancy states.
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We used two habitat-related covariates reflecting forest loss and
forest fragmentation: percentage of forest and division index. Division
indexis defined as the probability that two randomly selected pixelsin
the landscape are not situated in the same forest patch. Additionally,
we used three covariates representing human pressure: distance to
protected areaedge, distance to built-up areas and human population
density (Table 1 and Supplementary Methods 2). We also explored
data representing management effectiveness of the PAs such as the
‘management effectiveness tracking tool” but this information was
unavailable for six PAs. We calculated percentage of forest (percForest),
distanceto protected area edge (distPA) and distance to built-up areas
(distBuiltUp) at the local scale and division index (Div) and human
population density (Pop) at the landscape scale.

We defined the local scale to calculate percentage of forest as
acircular area of analysis or ‘buffer’ around each camera-trap site
(Fig. 1) and selected the size of the buffer based on the home range
sizes of the species included in this study (Supplementary Methods 3
and Fig. 12). To avoid misunderstanding from double meanings, we
use the term ‘buffer’ to represent a conceptual area considered in the
analysis and it does not relate to any specific area of management. We
used a 300 m radius buffer for species with a small home-range size,
600 mradius for species withamedium home-range size and 2,100 m
radius for species with alarge home-range size. We excluded elephant
species (Loxodonta Africana and Elephas maximus) because their
large body and home-range sizes would require using a large buffer
to assess the effect of forest cover on colonization and survival at the
appropriate local scale. We used different buffer sizes to assess the
effect of local-scale covariates on occupancy dynamics to facilitate
comparison between species with different area requirements and
home range sizes. We note, nonetheless, that the biological interpreta-
tion of ‘occupancy’—and thus local survival and colonization driving
its dynamics—may differ across species. It may also be impacted by
differences in camera-trap density across PAs (as mentioned above,
two PAs were sampled at a density of one camera per km?). Specifically,
for species with large home ranges and high dispersal capabilities,
in combination with smaller camera trap spacing, occupancy may
more closely represent use rather than occurrence®. For distance to
protected area edge and distance to built-up areas, we calculated the
Euclidean distance from the camera-trap site to the protected area
edge and closest built-up area, respectively.

To define the landscape scale, we created a 10 km buffer around
each camera-trap array within a protected area (Fig. 1)**. This buffer
included both protected and unprotected area (Supplementary Fig.1).
In one PA, camera-traps were deployed in three separate clusters,
with different landscape and anthropogenic characteristics (Manaus;
SupplementaryFig.1), thus resultingin three distinct (non-overlapping)
landscape-scale buffers. Inthis case, we averaged the landscape-scale
covariates across the three landscape-scale buffers and used the mean
valuesinour models. To ensure that averaging values across landscapes
did not unduly influence our results, we additionally run the same
model considering each camera-trap array in Manaus as anindividual
PA.The S coefficients of thismodel remained similar and we decided to
treat Manaus as a single PA (Supplementary Fig.13). Human population
density was defined as the average number of people living per km?in
the 10 km buffer surrounding each camera-trap array.

The values of time-varying covariates (percentage of forest, divi-
sionindex, human population density and distance to built-up areas)
remained fairly stable across years. Therefore, for these covariates, we
used single values instead of time-matched covariates to avoid includ-
ing repeated values (Supplementary Figs. 2-6). For habitat-related
covariates (percentage of forest and divisionindex) we used the mean
value over the sampling years for each PA. For human-related covariates
(human population density and distance to built-up areas), we used
data from the year 2010 or 2015, depending on the average sampling
year of each PA (Supplementary Table 4).

For the analysis, we transformed covariates with extreme values
(log transformation for slope, body mass, human population den-
sity, distance to protected area edge and distance to built-up areas)
and standardized them to O mean and 1 standard deviation. Further
details onthe calculation of the spatial covariatesincluded in the detec-
tion, colonization and survival model are provided in Supplementary
Methods 2.

Modelfitting
We fitted our Bayesian model using Markov chain Monte Carlo (MCMC)
methods and the R package nimble®*. We used NIMBLE default samplers
except for the regression coefficients for yand ¢ where we used ablock
sampling approach for each pair of « and 8 (random-walk block sam-
pler withmultivariate normal proposalin NIMBLE) toimprove MCMC
efficiency (effective sample size/MCMC run time).

We used uninformative or weakly informative priors (model code
in Supplementary Methods 4). We ran six chains, each of 400,000
MCMCiterations and discarded the initial 80,000 iterations as burn-in.
We visually inspected trace plots to assess convergence and mixing of
the chains and calculated the Gelman-Rubin statistic for each param-
eter (R-hat values <1.1indicated convergence)®. To assess the effect
of covariates on colonization and survival probabilities we used the
mean of the posterior distribution and the associated 95% BCl of each
P coefficient. Wereport estimates at the global level meaning that they
correspond tomean S coefficients at global level instead of coefficients
for each protected area. Modifying the sampling effort (number of
years or camera-trap sites in each PA) should not affect 8 coefficients
but their uncertainty (wider or narrower 95% BCI).

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Covariates included in our model are based on publicly available
data and extracted values are in a Figshare repository (https://doi.
org/10.6084/m9.figshare.21947300), as well as the R script to subset
and organize the data. The detection non-detection matrix is also avail-
able from Figshare and raw camera-trap data from the TEAM Network
are available on the Wildlife Insights platform (wildlifeinsights.org).

Code availability
All code to reproduce the analysis has been archived on Figshare
(https://doi.org/10.6084/m9.figshare.21947300).
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Software and code

Policy information about availability of computer code

Data collection  Raw camera-trap data from the Tropical Ecology Assessment and Monitoring (TEAM) Network are available on the Wildlife Insights platform
(wildlifeinsights.org). DeskTEAM is the dynamic software package developed by the TEAM network for processing camera-trap data.
We used R to extract and calculate predictor covariates.

Data analysis We used the R package NIMBLE to run our model. The model code is provided in the Supplementary information and the entire R script code
to reproduce the analysis has been archived on Figshare .

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Covariates included in our model are based on publicly available data, and extracted values are in a Figshare repository, as well as the R script to subset and




organize the data. The detection non-detection matrix is also available from Figshare and raw camera-trap data from the TEAM Network are available on the

Wildlife Insights platform (wild

lifeinsights.org).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable, this information has not been collected.

Population characteristics
Recruitment

Ethics oversight

Not applicable.
Not applicable.

Not applicable.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

these points even when the disclosure is negative.

We used standardized camera-trap data collected by the Tropical Ecology Assessment and Monitoring (TEAM) Network where
camera-traps are deployed in protected areas across tropical forests. In each protected area, camera-trap arrays cover a minimum of
~100 km2, and cameras are deployed at a density of one camera per 2 km2 but this density is lower (1 camera per 1 km2) for a few
sites. Within each protected area, between 60 and 90 cameras are deployed sequentially in arrays of 20-30, rather than
simultaneously (i.e., all 60/90 cameras at the same time).

TEAM uses Reconyx camera-traps (models: HC500, HC600, PC800, PC900, RC55, RC60, RM45) which are distributed in a regular grid,
and deployed close to animal trails and without using bait. In each deployment, cameras are active for a minimum of 30 consecutive
days during the dry season (i.e., months with less than 100 mm average rainfall or the driest part of the year in the absence of dry
season).

All medium-to-large terrestrial mammal species (>1 kg) detected by the camera-traps (n = 159 species).

The sampling design for the TEAM Terrestrial Vertebrate Monitoring Protocol was carefully specified to maximize the probability of
photographing an adequate sample of tropical forest terrestrial mammal and bird species. It was intended to monitor changes in the
community of ground-dwelling, terrestrial vertebrates, and not to monitor the abundance of individual species. This is an important
distinction. As such, the sampling design represents a compromise between the level of effort required to detect species that range
over large areas (>100 km?2), and the effort required to detect species with smaller home ranges (~1 km2). The design also accounts
for sampling constraints in the field, which may vary in different parts of the world, and for the logistical trade-offs of cost versus
effort.

Camera-trap data across the 16 protected areas included in this study were collected by the TEAM network and following a
standardized camera-trapping protocol. In each protected area, cameras were deployed at a density of one camera per 2 km2 but
this density is lower (1 camera per 1 km2) for a few sites. Within each protected area, between 60 and 90 cameras were deployed
sequentially in arrays of 20-30, rather than simultaneously. Cameras were active for a minimum of 30 consecutive days.

Camera-trap data was collected during the dry season (i.e., months with less than 100 mm average rainfall or the driest part of the
year in the absence of dry season) between 2008 and 2017, and each protected area was surveyed for a minimum of 2 years and a
maximum of 10 years (mean = 6.5 years).

In each protected area, camera-trap arrays covered a minimum of ~100 km2, and cameras were deployed at a density of one camera
per 2 km2 but this density was lower (1 camera per 1 km2) for a few sites.

We excluded camera-trap sites for which inconsistencies in the date-time stamps were found (i.e., detection day was before the
camera-trap deployment day). We included a total of 1002 camera-trap sites.

Camera-traps were successfully deployed in all sites. The initial deployment of some cameras in Barro Colorado Nature Monument -
Soberania National Park failed and those sites were re-sampled later. This did not affect the analyses/results of our study.

We classified detected species into two groups: habitats specialists and habitat generalists. We used habitat breadth information to
classify species into specialists or generalists. Habitat breadth represents the number of IUCN suitable habitat types occupied by a
species. We defined specialists as those species with habitat breadth values lower or equal than the median (i.e., species with
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habitat breadth values between 1 and 4), and habitat generalists as those species with habitat breadth values higher than the median
(i.e., habitat breadth values between 5 and 26). We used the median to classify species into groups as this allowed us to have
sufficient data in each group, and note that in our classification, specialists are not restricted to one type of habitat, but occupy a low
number of habitat types.

Blinding Not applicable. Blinding was not relevant to the collection and compilation of these data. Experts identified the images and there
were various cross checks and quality controls applied to ensure consistency.

Did the study involve field work? Yes |:| No

Field work, collection and transport

Field conditions Fieldwork was carried our during the dry season (i.e., months with less than 100 mm average rainfall or the driest part of the year in
the absence of dry season). Average minimum temperature across all sites was ~19 °C and average maximum temperature across all
sites was ~29 °C (WorldClim data).
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Location Location of the 16 protected areas is shown in the manuscript (Figure 1).

Access & import/export  TEAM managers from each protected area got the necessary permits for carrying out the fieldwork inside the protected areas.
Samples were not imported/exported.

Disturbance There were not disturbances caused in the protected areas.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

0
0
X
0

Clinical data
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The study did not involved laboratory animals.
Wild animals The study did not capturing wild animals. We used camera-traps which is a non-invasive technique to monitor mammals.
Reporting on sex Sex data was not collected in this study.

Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration between Conservation International, the Smithsonian
Tropical Research Institute and the Wildlife Conservation Society.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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