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Abstract

Many animal–environment interactions are mediated by the physical forms of

the environment, especially in tropical forests, where habitats are structurally

complex and highly diverse. Higher structural complexity, measured as habitat

surface area, may provide increased resource availability for animals, leading

to higher animal diversity. Greater habitat surface area supports increased ani-

mal diversity in other systems, such as coral reefs and forest canopies, but it is

uncertain how this relationship translates to communities of highly mobile,

terrestrial mammal species inhabiting forest floors. We tested the relative

importance of forest floor habitat structure, encompassing vegetation and

topographic structure, in determining species occupancy and functional diver-

sity of medium to large mammals using data from a tropical forest in the

Udzungwa Mountains of Tanzania. We related species occupancies and diver-

sity obtained from a multispecies occupancy model with ground-level habitat

structure measurements obtained from a novel head-mounted active remote

sensing device, the Microsoft HoloLens. We found that habitat surface area

was a significant predictor of mean species occupancy and had a significant

positive relationship with functional dispersion. The positive relationships

indicate that surface area of tropical forest floors may play an important role

in promoting mammal occupancy and functional diversity at the microhabitat

scale. In particular, habitat surface area had higher mean effects on occupancy

for carnivorous and social species. These results support a habitat surface

area–diversity relationship on tropical forest floors for mammals.
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INTRODUCTION

Habitat is a critical concept in ecology, defined as the
resources and conditions present in an area that produce
occupancy by a species (Hall et al., 1997). Because of
species-specific habitat requirements, the way that habitat
structure (i.e., the physical organization of habitat, includ-
ing vegetation and topography) relates to habitat availabil-
ity may determine broader patterns of animal diversity
within forests (Adila et al., 2017). That is, habitat structure
may be associated with the diversity of resources
(e.g., food, nesting) available to animals and may, thus,
affect multiple aspects of animal diversity (MacArthur,
1964; Recher, 1969). For example, as the complexity of
canopy, shrub, grass, and debris cover increases, the abun-
dance of small ground-dwelling mammals also increases
(Cork & Catling, 1996). Reduced standing tree density
from tree thinning, greater fallen log density, and greater
ground vegetation cover can also increase the abundance
of animal species (Son et al., 2017).

In tropical forests, vegetation is highly productive,
leading to complex habitat structure via increased growth
form diversity and stratification (Spicer et al., 2020).
Animals may choose to use different types of forest floor
habitats based on their functional traits, such as body
size, diet, and habitat use (Ikin et al., 2012). For example,
browsing species occur in habitats with more woody and
leafy material (Ehlers Smith et al., 2017). Thus, animal
species occupancies vary with habitat type based on their
ecological needs (Riordan et al., 2020). Some aspects of
habitat structure, such as the abundance of vegetative
structural attributes, are even associated with increased
diversity of functional traits within mammal communi-
ties (Sukma et al., 2019).

The relationship between habitat structure and mam-
mal functional trait diversity (i.e., the value, range, and
relative abundance of traits in a given community; Díaz
et al., 2007) is particularly important because of the eco-
system services that mammals provide, such as seed dis-
persal, maintenance of carbon stocks, nutrient cycling,
and control of seedling recruitment (Lacher et al., 2019).
Mammals encompass a broad range of body sizes, dietary
niches, and home range sizes, allowing them to have sig-
nificant and diverse roles in ecosystem dynamics.
Mammals are particularly diverse in the tropics, further
indicating their ecological importance. Finally, many
mammals are endangered, putting the ecosystem services
that they provide at risk as well (Flynn et al., 2009).
Identifying the aspects of habitat structure relevant to
mammal diversity is important given the ongoing biodi-
versity crisis, particularly for functional diversity as it
relates to the quantity and quality of ecosystem services
at local scales (Abelleira Martínez et al., 2016).

Despite the fundamental importance of habitat
structure in determining animal diversity (MacArthur,
1964; Ralph, 1985; but see Recher, 1969) current assess-
ment of forest floor structure is challenging, time con-
suming, and expensive (Buckley et al., 1999). Habitat
surface area is a metric of structure that is associated with
animal diversity in multiple systems, including coral reefs
(Graham & Nash, 2013) and tropical forest canopies
(Davies & Asner, 2014). On coral reefs, structural com-
plexity generated by corals accommodates a wider variety
of niches and facilitates heterogeneous microhabitat con-
ditions for species (Graham & Nash, 2013). In tropical
forest canopies, surface area and complexity measured
from aerial LiDAR have been linked to greater species
diversity due to increased microclimates and microhabi-
tats (Schneider et al., 2020; Vogeler et al., 2014). In the
present study, we measured forest floor habitat surface
area using the active remote sensing capabilities of a
mixed-reality device, the Microsoft HoloLens 2, which
has been proposed as a new approach for measuring hab-
itat structure (Gorczynski & Beaudrot, 2022). The remote
sensing capabilities of the HoloLens 2 can effectively cap-
ture attributes of forest floor habitat structure and be
used to quantify surface area.

We tested for associations between forest floor habitat
surface area and mammal species occupancy (probability
of site occupation by a species given the possibility of
nondetection; MacKenzie et al., 2002), functional disper-
sion (mean distance in trait space of individual species to
centroid all species; Laliberte & Legendre, 2010), and
functional richness (volume of functional space occupied
by a community; Villéger et al., 2008) at the microhabitat
level while accounting for imperfect detection and eleva-
tion. We used camera trap data to estimate wildlife occu-
pancy and functional diversity within the Udzungwa
Mountains National Park, Tanzania, and measured habi-
tat surface area using the Microsoft HoloLens 2. Previous
work in the park demonstrated associations between
mammal occupancy as detected by camera traps and hab-
itat characteristics such as tree diversity and herbaceous
cover (Bowkett et al., 2007; Martin et al., 2015), making
this an excellent system in which to test for associations
between mammals and habitat structure.

METHODS

Study site

The Udzungwa Mountains National Park is the
southern-most and largest mountain block of the Eastern Arc
Mountains, a chain of disjunct mountains extending from
southern Kenya to southern Tanzania (Lovett et al., 2006).
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This region holds outstanding levels of endemism and
is part of the Eastern Afromontane biodiversity hotspot
(Myers et al., 2000; Rovero, Menegon, et al., 2014). The
study area, Mwanihana Forest, is located on the north-
eastern escarpment of the Udzungwa Mountains and is
composed of tropical forest covering an elevation gradi-
ent from 290 to 2300 m above sea level (asl). Forest
floors contain a variety of trees, saplings, seedlings,
shrubs, lianas, and fallen vegetation including logs
and leaf litter. The topography of the park is often
very steep and complex. Outside of the park, lower
elevations are dominated by agricultural and developed
landscapes, with high human population densities
(Defries et al., 2010).

Camera trapping

As part of an annual monitoring program in the
Udzungwa Mountains National Park, a component of the
Tropical Ecology Assessment and Monitoring (TEAM)
initiative (Rovero & Ahumada, 2017), 31 Reconyx RM45
or Hyperfire camera traps were deployed in a grid with
1.4 km between cameras. All monitoring sites were
within closed forested habitat within Mwanihana Forest,
and camera trap surveys were conducted during the dry
season from July to November 2021. Camera traps were
affixed to trees at a height of ~1 m off the ground and
directed toward game trails or clearings. Cameras were
left active at each site for ~30 days, and each site was
monitored during one of three separate deployment
periods. Photographs from the camera traps were
processed with ad hoc software Wild.ID (Fegraus &
MacCarthy, 2016), and species were identified by
Francesco Rovero, Arafat Mtui, and Steven Shinyambala.
Detection ranges of camera traps can vary based on alti-
tude, temperature, and humidity, which potentially intro-
duces detection variability between cameras.

Habitat structure scanning

We used the VegSense application (Gorczynski &
Beaudrot, 2022) on the HoloLens 2 to measure habitat
structure at all 31 camera trap locations (Appendix S1:
Figure S1) during November 2021. VegSense allows the
user to control the HoloLens’s built-in environmental
scanners, which use reflected light rays to detect and digi-
tally construct three-dimensional (3D) environments. As
a result, environmental detection may be dependent on a
variety of conditions, including incoming solar radiation,
although we did not test for these effects. At each sam-
pling site, we activated the scanners to map the area

immediately surrounding the camera trap. The scanned
area varied from site to site based on the topography but
generally included the tree to which the camera was fixed
and a 120� wedge in front of the camera roughly 5 m in
radius. Although the area scanned at each site varied, the
amount of area scanned was calculated and used to stan-
dardize measurements as a ratio (as described in the
Habitat structure processing section). The scanning pro-
cess involved walking the area and pivoting the head
from the horizontal position downward to capture struc-
tures at all heights below eye level. This technique should
control for height between plots, although further field
testing is required. The application projects a holographic
mesh on detected objects, allowing the extent of the scan
to be monitored while it was occurring. Once the envi-
ronment surrounding a camera trap was adequately
mapped, the scanners were deactivated, and the mesh
was saved as an .obj file to the HoloLens 2 for later spa-
tial processing.

Habitat structure processing

Wavefront (.obj) files obtained from the HoloLens were
imported and processed in Blender (Community, 2018;
Appendix S1: Figure S2). To calculate habitat surface
area, the scanned objects were oriented so that the
ground was horizontal to the x–z plane. The surface area
(i.e., the raw surface area of the scan) of the object was
calculated using Blender’s 3D print statistics. The object
was then collapsed along the y-axis into only two dimen-
sions. The surface area of the collapsed object (i.e., the
scan footprint or floor space) was then calculated and
served to control for area scanned in the habitat metric.
The final measurement of surface area was calculated as
the surface area of the scanned object divided by the
two-dimensional area scanned (i.e., the surface area of
the environment controlled by the amount of area
scanned). We refer to this habitat surface area per unit
area scanned as the habitat surface area ratio for the rest
of the manuscript, and it is our main measurement of
habitat structure. This process was repeated for each
of the 31 sampling areas scanned. In addition, elevation
values for each camera trap were obtained from previ-
ously published data (Jarvis et al., 2008). Because eleva-
tion is known to have effects on mammal occupancies
(Cavada et al., 2019; O’Brien et al., 2020; Rovero, Martin,
et al., 2014), we included this as a covariate in the occu-
pancy model. In the study forest, elevation is correlated
with other environmental variables including distance to
park boundary and temperature (based on data from
Beaudrot et al., 2016; Appendix S1: Figure S3) and corre-
sponds to forest type (two broad types: montane and
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lowland deciduous). The habitat surface area ratio and
elevation were not significantly correlated (Appendix S1:
Figure S3).

Occupancy modeling

To test the effects of habitat structure on
community-level occupancy and individual species occur-
rence, we ran a single-season multispecies occupancy
model using data from the camera trap surveys (Kéry &
Andrew Royle, 2020). Accounting for imperfect detection
allowed us to calculate the probability of a species being
present at a location even if it was not observed. Naïve
occupancy values are available on figshare. Camera trap
data were divided into 15 sampling periods, with each
period lasting approximately 6 days. Species were either
detected or not detected at each camera trap site for each
of the sampling periods during which the camera was
active. The occupancy model included species-level esti-
mates for both detection and occupancy incorporated as
random effects pulled from a common distribution
describing all species. These random terms included both
occupancy and detection intercepts, as well as two
parameters describing the effects of occupancy covariates,
including habitat surface area ratio and elevation (ran-
dom slope terms). For each of these random slopes, the
beta coefficient for species i was described by

βi �Normal μβ, sdβð Þ,

where μβ and sdβ are the model estimated mean and
standard deviation across all species. Vague priors were
set for μβ and sdβ, specifically, μβ ~ Normal(0, 31.6) and
sdβ ~ Uniform(0, 10). Because random intercept terms
are bounded by 0 and 1 on the arithmetic scale, using a
vague prior to draw these terms from a normal distribu-
tion on the logit scale results in high prior probability
densities clumped around 0 and 1. To ensure a flat prior
distribution for the intercept terms, we drew priors for
the μβs associated with occupancy and detection inter-
cepts from a Uniform(0,1) distribution and then
transformed it to the logit scale prior to drawing species
intercepts. That is:

μβ0� logit Uniform 0,1ð Þð Þ:

Given that all camera traps had a clear view of game
trails on which species were expected to occur, we did
not include any covariates for the detection component
of the model. Environmental covariates for the occu-
pancy component of the model were standardized to
compare effect sizes more easily, and none of the

continuous variables showed directional skew in
distribution as determined by visual inspection. To facili-
tate model convergence, we only included mammal spe-
cies detected more than three times. The model was run
using Bayesian formulation in R version 4.1.2 (R Core
Team, 2021) using the R2Jags package (Su & Yajima,
2015). We ran four chains for 10,000 iterations of the
model with a 1000-iteration burn-in and retained every
30th sample.

Model results provided estimates of individual species
occupancies, as well as the effect size for both environ-
mental variables on mean species occupancy and individ-
ual species occupancies. We visually assessed trace plots
and Brooks-Gelman-Rubin (Rhat) convergence diagnos-
tic (<1.05) to ensure model convergence. We then
derived distributions of camera-trap level functional dis-
persion and functional richness from the occupancy
model to get the mean and SD of these metric estimates.
Distributions of estimated functional dispersion and
functional richness values were derived from binomial
species-specific occupancy values from the posterior dis-
tribution of each of the 1200 retained model iterations for
each camera trap location. We calculated the mean and
SD of functional dispersion and functional richness esti-
mates for each camera trap location from the distribution
of derived values. Functional dispersion and functional
richness were calculated with the FD package in R
(Laliberté et al., 2015) using six relevant functional traits
(body mass; diet composition—five categories: graze,
browse, fruits/seeds, vertebrates, invertebrates;
sociality—form groups with more than two mature indi-
viduals; substrate use—terrestrial or scansorial; activity
period—three categories: diurnal, crepuscular, nocturnal;
and average litter size; Gorczynski et al., 2021;
Gorczynski & Beaudrot, 2021, Appendix S1: Table S1).
Generally, these traits capture quantitative and qualita-
tive environmental requirements of species. For example,
body mass, sociality, and average litter size can indicate
the amount of resource use by a species on a small scale,
while diet, substrate use, and activity period can indicate
the type of resources used.

To assess the effects of the environmental
covariates on the functional diversity metrics, we
modeled the derived mean values of functional disper-
sion and functional richness weighted by the variance
(inverse of the standard deviation squared) of the
respective diversity metric for each camera trap as the
response variable using the “lm” function from the
stats package in R (R Core Team, 2021). We used
Gaussian distributions to model functional dispersion
and functional richness, visually inspected for normal
distribution of residuals of the resulting models, and
checked for outliers with high leverage using Cook’s
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distance (cutoff >1). For each functional diversity met-
ric, we ran two separate regression models, each of
which contained either habitat surface area ratio or
elevation as a predictor. We also ran unweighted ver-
sions of these models for comparison (Appendix S1:
Figure S5). We visually examined model fit and resid-
uals to ensure model assumptions were met.

Finally, we ran backward linear model selection to
assess the relationship between mean environmental
effects on individual species occupancy and species func-
tional traits to determine whether species with particular
traits had higher average estimated effect sizes for envi-
ronmental conditions. All traits that were not strongly
correlated with one another (r < 0.6) were included as
potential predictor variables (diurnal and nocturnal
activity periods were negatively correlated, so the noctur-
nal trait was removed) and mean species environmental
effects were the response variable (weighted by the
inverse of the SD squared). We ran backward model
selection using the MASS package (Ripley et al., 2022) in
R for all environmental variables that had a significant
effect on mean community occupancy.

RESULTS

Nineteen species were detected more than three times
and were included in this analysis. Species ranged in
average body mass from 0.453 kg (Rhynchocyon cirnei—

checkered sengi or checkered elephant shrew) to 76.6 kg
(Potamochoerus larvatus—bushpig). At camera trap sites,
the habitat surface area ratio ranged from 1.12 to 1.46.
Elevation ranged from 408 to 1710 masl. Mean functional
dispersion ranged from 0.259 to 0.309, and
functional richness ranged from 0.133 to 0.306.

The results of the multispecies occupancy model
revealed a significant positive association (95% credible
interval did not include 0) between habitat surface area
ratio and occupancy at the community level (Figure 1).
Elevation showed a weak nonsignificant positive associa-
tion with occupancy.

Generalized linear regression revealed a significant
positive relationship between habitat surface area ratio
and functional dispersion (Figure 2a). We found that no
data point in the model had substantial leverage (Cook’s
distance <1 for all points). Functional richness showed a
positive relationship with habitat surface area ratio that
approached significance (Figure 2c). Both diversity met-
rics showed nonsignificant relationships with elevation
(Figure 2b,d). Unweighted regression outputs were quali-
tatively the same as reported results, except that the posi-
tive relationship between habitat surface area ratio and
functional richness was significant (Appendix S1:
Figure S5).

Occupancy for all individual species had a positive
relationship with habitat surface area ratio (Figure 3),
although the mean effect size varied among species.
Genetta servalina (servaline genet; mean = 0.78,

–1 0 1

F I GURE 1 Coefficient plot showing relative effect sizes of standardized environmental covariates on mean species occupancy from

multispecies occupancy model used. Points represent mean effect size, thin bars represent 95% credible intervals, and thick bars represent

90% credible intervals. Distribution colors indicate credible interval inclusion of zero (green 95% CI does not include zero; gray 90% CI

includes zero). Surface area shows a significant positive relationship (as defined by a nonzero 95% credible interval) with mean species

occupancy.
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95% CI = 0.11, 1.84) showed the most positive mean
association with habitat surface area ratio and a 95%
credible interval that did not include zero.

Because habitat surface area ratio was the only vari-
able to have a significant association with mean commu-
nity occupancy, we ran a backward model selection to
test the relationship between species functional traits and
individual species surface area associations
(Appendix S1: Table S2). The output model from the
selection process included significant positive effects of
vertebrate diet and sociality on species response to sur-
face area ratio (Figure 4). This means that species that
consumed vertebrates and species that were social
responded more strongly to habitat surface area than spe-
cies that did not have these traits. This model also had a
positive association with scansoriality that approached
significance.

DISCUSSION

We tested the extent to which tropical forest floor habitat
surface area predicted the occupancy and functional
diversity of ground-dwelling mammals. Mean species
occupancy and functional dispersion increased signifi-
cantly with surface area. This result supports the habitat
surface area–diversity hypothesis in tropical forest floors,
even for large, highly mobile species in localized
microhabitats.

Habitat surface area is an important correlate of ani-
mal diversity in many systems due to its provision of
increased microhabitat, microclimate, and resource
diversity (Davies & Asner, 2014; Johnson et al., 2003;
MacArthur, 1964; Ralph, 1985; Recher, 1969;
Torres-Pulliza et al., 2020). Our results suggest that
greater forest floor habitat surface area may also provide

Estimate

Adjusted

Estimate

Adjusted

Estimate

Adjusted

Estimate

Adjusted

F I GURE 2 Linear relationships between standardized environmental metrics (habitat surface area and elevation) and functional

diversity metrics (functional dispersion and functional richness). Green lines indicate weighted regressions, while gray shaded areas indicate

95% CIs of the regressions. Values reported for each regression include the parameter estimate and the 95% CI. Fitted regressions were

weighted by the inverse SD squared of the diversity estimates, and the point error bars represent one SD. Habitat surface area (solid line)

showed a significant positive relationship with functional dispersion. Dashed lines indicate nonsignificant relationships.

6 of 11 GORCZYNSKI ET AL.

 19399170, 2023, 12, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4181 by R

ice U
niversity, W

iley O
nline L

ibrary on [01/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



higher resource or microhabitat diversity for a greater
variety of mammal species. On coral reefs, greater surface
area leads to greater niche and microhabitat diversity
that supports a greater variety of species at higher
abundances. For large ground-dwelling mammals,
species ranges are larger than camera trap sampling
locations, and so the mechanism for this relationship
may differ. Nevertheless, habitat surface area is associ-
ated with biological diversity in multiple layers of
forest structure, from the forest floor to the canopy
(Davies & Asner, 2014).

The positive relationship between habitat surface area
and mammal diversity was significant for mean species
occupancy and functional dispersion. This indicates that
greater habitat surface area was related to higher species
occupancy overall and a greater proportion of

functionally unique species, as indicated by the increased
functional dispersion. Low habitat surface area may be
suitable to a limited number of species with similar func-
tional traits, for example, those that forage in open forest
floors (Son et al., 2017), leading to lower functional dis-
persion. In forest floors with higher habitat surface area,
functionally unique species may be more likely to find
necessary resources or microhabitats for feeding, move-
ment, and nesting, leading to higher functional
dispersion.

The positive relationship between mammal func-
tional dispersion and habitat surface area on the forest
floor at a small scale is in accord with previous results
identifying a relationship between protected area-level
mammal functional dispersion and Normalized
Difference Vegetation Index (NDVI) using satellite-based

Swynnerton's bush squirrel

Suni

Abbott's duiker

Grey-faced sengi

Harvey's duiker

Bushpig

Eastern tree hyrax

Checkered sengi

Udzungwa red colobus

Bushy-tailed mongoose

Sanje mangabey

Gambian pouched rat

Honey badger

Marsh mongoose

Leopard

African palm civet

Cape porcupine

Sykes' monkey

Servaline genet

−2 −1 0 1 2 3

Habitat surface area effect size

Sp
ec

ie
s

F I GURE 3 Individual species occupancy associations with habitat surface area. Points represent mean effect size, thin bars represent

95% credible intervals, and thick bars represent 90% credible intervals. Distribution colors indicate credible interval inclusion of zero

(dark green—95% CI does not include zero; light green—90% CI does not include zero; gray—90% CI includes zero). Species occupancies

showed positive mean relationships with habitat surface area, but to varying degrees. In particular, the 95% credible interval of this effect

for Genetta servalina does not include zero, indicating that this species had the most positive association with microhabitats with more

surface area. See supporting data on figshare for species scientific names.
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remote sensing (Gorczynski et al., 2021). Habitat area
indices and NDVI can provide important estimates of
ecosystem productivity, but on very different scales
(Asner et al., 2003) and in different parts of the forest
(forest floor vs. canopy, respectively). This might indicate
that relationships between productivity-associated
resource availability and dispersion of mammal func-
tional traits in tropical forests (Evans et al., 2005) exist
across scales and within different aspects of forest vegeta-
tion. In measuring fine-scale species occurrence at indi-
vidual camera traps, the relevant metrics for habitat
quality may thus also be fine-scale and localized in the
relevant habitat (in this case the forest floor). In addition,
tropical forest mammal communities have high func-
tional redundancy (Gorczynski & Beaudrot, 2021; Safi
et al., 2011), a pattern that is reflected in this study
through the asymptotic relationship between mean spe-
cies occupancy and functional dispersion (Appendix S1:
Figure S4).

Our results demonstrated that mammal species with
certain traits responded more positively to habitat surface
area. Species that consumed vertebrates or exhibited
social behavior had a higher mean effect of surface area
on occupancy than other species. Some examples of spe-
cies with high mean effects of habitat surface area on
occupancy that consumed vertebrates included the

servaline genet (Genetta servalina), African palm civet
(Nandinia binotata), and leopard (Panthera pardus),
while social species, defined as those forming groups of
more than two mature individuals, included Sykes’ mon-
key (Cercopithecus mitis) and Sanje mangabey
(Cercocebus sanjei). Species associated with high habitat
surface area may favor complex habitats when hunting
prey or may require large amounts of localized resources
to feed groups. High-surface-area habitats may contain
more cover for predators while hunting and provide more
food for foraging groups of social species. Increased occu-
pancy of these species in high surface area microhabitats
may also increase functional dispersion.

The Udzungwa Mountains National Park is a biologi-
cally unique region encompassing a variety of habitat
types, including deciduous tropical forest in the lower
elevation parts of the park. The fact that this study was
conducted in the dry season, when some vegetation was
dry and falling on the ground, may have affected the hab-
itat structure of the forest floor in some locations, with
larger amounts of leaf litter and lower quantities of green
vegetation. In addition, it is possible that mammals alter
their behavioral patterns based on the season, although
previous work in this area showed minimal effects of sea-
sonality on mammal occupancy (Martin et al., 2017). The
interaction between forest floor habitat structure and
mammal diversity may be dynamic, and this study is only
the first step in teasing apart this relationship.
Conservationists should be sure to consider forest floor
and understory habitat integrity when planning manage-
ment, as these aspects of the environment may be rele-
vant to the biodiversity of animal taxa in a system.
Ensuring that forest floor habitat complexity is not lost
due to disturbances, such as those found at forest edges,
may be critical.
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